Add code to submodules

This commit is contained in:
Linus Färnstrand
2016-06-30 04:33:13 +02:00
parent ec16a7d342
commit 5950239744
3 changed files with 480 additions and 0 deletions

24
src/common.rs Normal file
View File

@ -0,0 +1,24 @@
#[derive(Debug,Clone,PartialEq,Eq)]
pub enum IpNetworkError {
InvalidAddr(String),
InvalidPrefix,
InvalidCidrFormat(String),
}
pub fn cidr_parts<'a>(cidr: &'a str) -> Result<(&'a str, &'a str), IpNetworkError> {
let parts = cidr.split('/').collect::<Vec<&str>>();
if parts.len() == 2 {
Ok((parts[0], parts[1]))
} else {
Err(IpNetworkError::InvalidCidrFormat(format!("CIDR must contain '/': {}", cidr)))
}
}
pub fn parse_prefix(prefix: &str, max: u8) -> Result<u8, IpNetworkError> {
let mask = try!(prefix.parse::<u8>().map_err(|_| IpNetworkError::InvalidPrefix));
if mask > max {
Err(IpNetworkError::InvalidPrefix)
} else {
Ok(mask)
}
}

361
src/ipv4.rs Normal file
View File

@ -0,0 +1,361 @@
use std::fmt;
use std::net::{Ipv4Addr};
use common::{IpNetworkError, cidr_parts, parse_prefix};
const IPV4_BITS: u8 = 32;
#[derive(Debug,Clone,Copy,Hash,PartialEq,Eq)]
pub struct Ipv4Network {
addr: Ipv4Addr,
prefix: u8,
}
impl Ipv4Network {
/// Constructs a new `Ipv4Network` from any `Ipv4Addr` and a prefix denoting the network size.
/// If the prefix is larger than 32 this will return an `IpNetworkError::InvalidPrefix`.
pub fn new(addr: Ipv4Addr, prefix: u8) -> Result<Ipv4Network, IpNetworkError> {
if prefix > IPV4_BITS {
Err(IpNetworkError::InvalidPrefix)
} else {
Ok(Ipv4Network {
addr: addr,
prefix: prefix,
})
}
}
/// Returns an iterator over `Ipv4Network`. Each call to `next` will return the next
/// `Ipv4Addr` in the given network. `None` will be returned when there are no more
/// addresses.
pub fn iter(&self) -> Ipv4NetworkIterator {
let (_, start) = self.network();
let end = start as u64 + self.size();
Ipv4NetworkIterator {
next: start as u64,
end: end,
}
}
pub fn from_cidr(cidr: &str) -> Result<Ipv4Network, IpNetworkError> {
let (addr_str, prefix_str) = try!(cidr_parts(cidr));
let addr = try!(Self::parse_addr(addr_str));
let prefix = try!(parse_prefix(prefix_str, IPV4_BITS));
Self::new(addr, prefix)
}
pub fn ip(&self) -> Ipv4Addr {
self.addr
}
pub fn prefix(&self) -> u8 {
self.prefix
}
pub fn mask(&self) -> (Ipv4Addr, u32) {
let prefix = self.prefix;
let mask = !(0xffffffff as u64 >> prefix) as u32;
(Ipv4Addr::from(mask), mask)
}
pub fn network(&self) -> (Ipv4Addr, u32) {
let (_, mask) = self.mask();
let ip = u32::from(self.addr) & mask;
(Ipv4Addr::from(ip), ip)
}
pub fn broadcast(&self) -> (Ipv4Addr, u32) {
let (_, network) = self.network();
let (_, mask) = self.mask();
let broadcast = network | !mask;
(Ipv4Addr::from(broadcast), broadcast)
}
pub fn contains(&self, ip: Ipv4Addr) -> bool {
let (_, net) = self.network();
let (_, mask) = self.mask();
(u32::from(ip) & mask) == net
}
/// Returns number of possible host addresses in this `Ipv4Network`.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let net = Ipv4Network::from_cidr("10.1.0.0/16").unwrap();
/// assert_eq!(net.size(), 65536);
///
/// let tinynet = Ipv4Network::from_cidr("0.0.0.0/32").unwrap();
/// assert_eq!(tinynet.size(), 1);
/// ```
pub fn size(&self) -> u64 {
let host_bits = (IPV4_BITS - self.prefix) as u32;
(2 as u64).pow(host_bits)
}
/// Returns the `n`:th address within this network.
/// The adresses are indexed from 0 and `n` must be smaller than the size of the network.
///
/// # Examples
///
/// ```
/// use std::net::Ipv4Addr;
/// use ipnetwork::Ipv4Network;
///
/// let net = Ipv4Network::from_cidr("192.168.0.0/24").unwrap();
/// assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(192, 168, 0, 0));
/// assert_eq!(net.nth(15).unwrap(), Ipv4Addr::new(192, 168, 0, 15));
/// assert!(net.nth(256).is_none());
///
/// let net2 = Ipv4Network::from_cidr("10.0.0.0/16").unwrap();
/// assert_eq!(net2.nth(256).unwrap(), Ipv4Addr::new(10, 0, 1, 0));
/// ```
pub fn nth(&self, n: u32) -> Option<Ipv4Addr> {
if (n as u64) < self.size() {
let (_, net) = self.network();
Some(Ipv4Addr::from(net + n))
} else {
None
}
}
fn parse_addr(addr: &str) -> Result<Ipv4Addr, IpNetworkError> {
let addr_parts = addr.split('.').map(|b| b.parse::<u8>());
let mut bytes = [0; 4];
for (i, byte) in addr_parts.enumerate() {
if i >= 4 {
return Err(IpNetworkError::InvalidAddr(format!("More than 4 bytes: {}", addr)));
}
bytes[i] = try!(byte.map_err(|_| {
IpNetworkError::InvalidAddr(format!("All bytes not 0-255: {}", addr))
}));
}
Ok(Ipv4Addr::new(bytes[0], bytes[1], bytes[2], bytes[3]))
}
}
impl fmt::Display for Ipv4Network {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}/{}", self.ip(), self.prefix())
}
}
pub struct Ipv4NetworkIterator {
next: u64,
end: u64,
}
impl Iterator for Ipv4NetworkIterator {
type Item = Ipv4Addr;
fn next(&mut self) -> Option<Ipv4Addr> {
if self.next < self.end {
let next = Ipv4Addr::from(self.next as u32);
self.next += 1;
Some(next)
} else {
None
}
}
}
#[cfg(test)]
mod test {
use std::mem;
use std::collections::HashMap;
use std::net::Ipv4Addr;
use super::*;
#[test]
fn create_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap();
assert_eq!(cidr.prefix(), 24);
}
#[test]
fn create_v4_invalid_prefix() {
let net = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 33);
assert!(net.is_err());
}
#[test]
fn parse_v4_0bit() {
let cidr = Ipv4Network::from_cidr("0/0").unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(0, 0, 0, 0));
assert_eq!(cidr.prefix(), 0);
}
#[test]
fn parse_v4_24bit() {
let cidr = Ipv4Network::from_cidr("127.1.0.0/24").unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(127, 1, 0, 0));
assert_eq!(cidr.prefix(), 24);
}
#[test]
fn parse_v4_32bit() {
let cidr = Ipv4Network::from_cidr("127.0.0.0/32").unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
assert_eq!(cidr.prefix(), 32);
}
#[test]
fn parse_v4_fail_addr() {
let cidr = Ipv4Network::from_cidr("10.a.b/8");
assert!(cidr.is_err());
}
#[test]
fn parse_v4_fail_addr2() {
let cidr = Ipv4Network::from_cidr("10.1.1.1.0/8");
assert!(cidr.is_err());
}
#[test]
fn parse_v4_fail_addr3() {
let cidr = Ipv4Network::from_cidr("256/8");
assert!(cidr.is_err());
}
#[test]
fn parse_v4_non_zero_host_bits() {
let cidr = Ipv4Network::from_cidr("10.1.1.1/24").unwrap();
assert_eq!(cidr.ip(), Ipv4Addr::new(10, 1, 1, 1));
assert_eq!(cidr.prefix(), 24);
}
#[test]
fn parse_v4_fail_prefix() {
let cidr = Ipv4Network::from_cidr("0/39");
assert!(cidr.is_err());
}
#[test]
fn size_v4_24bit() {
let net = Ipv4Network::from_cidr("0/24").unwrap();
assert_eq!(net.size(), 256);
}
#[test]
fn size_v4_1bit() {
let net = Ipv4Network::from_cidr("0/31").unwrap();
assert_eq!(net.size(), 2);
}
#[test]
fn size_v4_max() {
let net = Ipv4Network::from_cidr("0/0").unwrap();
assert_eq!(net.size(), 4_294_967_296);
}
#[test]
fn size_v4_min() {
let net = Ipv4Network::from_cidr("0/32").unwrap();
assert_eq!(net.size(), 1);
}
#[test]
fn nth_v4() {
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 24).unwrap();
assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(127, 0, 0, 0));
assert_eq!(net.nth(1).unwrap(), Ipv4Addr::new(127, 0, 0, 1));
assert_eq!(net.nth(255).unwrap(), Ipv4Addr::new(127, 0, 0, 255));
assert!(net.nth(256).is_none());
}
#[test]
fn nth_v4_fail() {
let net = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 0), 32).unwrap();
assert!(net.nth(1).is_none());
}
#[test]
fn hash_eq_compatibility_v4() {
let mut map = HashMap::new();
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
map.insert(net, 137);
let out = map.get(&net).unwrap();
assert_eq!(137, *out);
}
#[test]
fn copy_compatibility_v4() {
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
mem::drop(net);
assert_eq!(16, net.prefix());
}
#[test]
fn mask_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 29).unwrap();
let (ip, int) = cidr.mask();
assert_eq!(ip, Ipv4Addr::new(255, 255, 255, 248));
assert_eq!(int, 4294967288);
}
#[test]
fn network_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
let (ip, int) = cidr.network();
assert_eq!(ip, Ipv4Addr::new(10, 10, 0, 0));
assert_eq!(int, 168427520);
}
#[test]
fn broadcast_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
let (ip, int) = cidr.broadcast();
assert_eq!(ip, Ipv4Addr::new(10, 10, 1, 255));
assert_eq!(int, 168428031);
}
#[test]
fn contains_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 25).unwrap();
let ip = Ipv4Addr::new(74, 125, 227, 4);
assert!(cidr.contains(ip));
}
#[test]
fn not_contains_v4() {
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 50), 24).unwrap();
let ip = Ipv4Addr::new(10, 1, 0, 1);
assert!(!cidr.contains(ip));
}
#[test]
fn iterator_v4() {
let cidr = Ipv4Network::from_cidr("192.168.122.0/30").unwrap();
let mut iter = cidr.iter();
assert_eq!(Ipv4Addr::new(192, 168, 122, 0), iter.next().unwrap());
assert_eq!(Ipv4Addr::new(192, 168, 122, 1), iter.next().unwrap());
assert_eq!(Ipv4Addr::new(192, 168, 122, 2), iter.next().unwrap());
assert_eq!(Ipv4Addr::new(192, 168, 122, 3), iter.next().unwrap());
assert_eq!(None, iter.next());
}
#[test]
fn iterator_v4_tiny() {
let cidr = Ipv4Network::from_cidr("10/32").unwrap();
let mut iter = cidr.iter();
assert_eq!(Ipv4Addr::new(10, 0, 0, 0), iter.next().unwrap());
assert_eq!(None, iter.next());
}
// Tests the entire IPv4 space to see if the iterator will stop at the correct place
// and not overflow or wrap around. Ignored since it takes a long time to run.
#[test]
#[ignore]
fn iterator_v4_huge() {
let cidr = Ipv4Network::from_cidr("0/0").unwrap();
let mut iter = cidr.iter();
for i in 0..(u32::max_value() as u64 + 1) {
assert_eq!(i as u32, u32::from(iter.next().unwrap()));
}
assert_eq!(None, iter.next());
}
}

95
src/ipv6.rs Normal file
View File

@ -0,0 +1,95 @@
use std::fmt;
use std::net::Ipv6Addr;
use std::str::FromStr;
use common::{IpNetworkError, cidr_parts, parse_prefix};
const IPV6_BITS: u8 = 128;
#[derive(Debug,Clone,Copy,Hash,PartialEq,Eq)]
pub struct Ipv6Network {
addr: Ipv6Addr,
prefix: u8,
}
impl Ipv6Network {
/// Constructs a new `Ipv6Network` from any `Ipv6Addr` and a prefix denoting the network size.
/// If the prefix is larger than 128 this will return an `IpNetworkError::InvalidPrefix`.
pub fn new(addr: Ipv6Addr, prefix: u8) -> Result<Ipv6Network, IpNetworkError> {
if prefix > IPV6_BITS {
Err(IpNetworkError::InvalidPrefix)
} else {
Ok(Ipv6Network {
addr: addr,
prefix: prefix,
})
}
}
pub fn from_cidr(cidr: &str) -> Result<Ipv6Network, IpNetworkError> {
let (addr_str, prefix_str) = try!(cidr_parts(cidr));
let addr = try!(Ipv6Addr::from_str(addr_str)
.map_err(|_| IpNetworkError::InvalidAddr(format!("{}", addr_str))));
let prefix = try!(parse_prefix(prefix_str, IPV6_BITS));
Self::new(addr, prefix)
}
pub fn ip(&self) -> Ipv6Addr {
self.addr
}
pub fn prefix(&self) -> u8 {
self.prefix
}
}
impl fmt::Display for Ipv6Network {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(fmt, "{}/{}", self.ip(), self.prefix())
}
}
#[cfg(test)]
mod test {
use std::net::Ipv6Addr;
use super::*;
#[test]
fn create_v6() {
let cidr = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1), 24).unwrap();
assert_eq!(cidr.prefix(), 24);
}
#[test]
fn create_v6_invalid_prefix() {
let cidr = Ipv6Network::new(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1), 129);
assert!(cidr.is_err());
}
#[test]
fn parse_v6() {
let cidr = Ipv6Network::from_cidr("::1/0").unwrap();
assert_eq!(cidr.ip(), Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
assert_eq!(cidr.prefix(), 0);
}
#[test]
fn parse_v6_2() {
let cidr = Ipv6Network::from_cidr("FF01:0:0:17:0:0:0:2/64").unwrap();
assert_eq!(cidr.ip(), Ipv6Addr::new(0xff01, 0, 0, 0x17, 0, 0, 0, 0x2));
assert_eq!(cidr.prefix(), 64);
}
#[test]
fn parse_v6_fail_addr() {
let cidr = Ipv6Network::from_cidr("2001::1::/8");
assert!(cidr.is_err());
}
#[test]
fn parse_v6_fail_prefix() {
let cidr = Ipv6Network::from_cidr("::1/129");
assert!(cidr.is_err());
}
}