use std::fmt; use std::net::Ipv4Addr; use common::{IpNetworkError, cidr_parts, parse_prefix}; const IPV4_BITS: u8 = 32; #[derive(Debug,Clone,Copy,Hash,PartialEq,Eq)] pub struct Ipv4Network { addr: Ipv4Addr, prefix: u8, } impl Ipv4Network { /// Constructs a new `Ipv4Network` from any `Ipv4Addr` and a prefix denoting the network size. /// If the prefix is larger than 32 this will return an `IpNetworkError::InvalidPrefix`. pub fn new(addr: Ipv4Addr, prefix: u8) -> Result { if prefix > IPV4_BITS { Err(IpNetworkError::InvalidPrefix) } else { Ok(Ipv4Network { addr: addr, prefix: prefix, }) } } /// Creates an `Ipv4Network` from parsing a string in CIDR notation. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let new = Ipv4Network::new(Ipv4Addr::new(10, 1, 9, 32), 16).unwrap(); /// let from_cidr = Ipv4Network::from_cidr("10.1.9.32/16").unwrap(); /// assert_eq!(new.ip(), from_cidr.ip()); /// assert_eq!(new.prefix(), from_cidr.prefix()); /// ``` pub fn from_cidr(cidr: &str) -> Result { let (addr_str, prefix_str) = try!(cidr_parts(cidr)); let addr = try!(Self::parse_addr(addr_str)); let prefix = try!(parse_prefix(prefix_str, IPV4_BITS)); Self::new(addr, prefix) } /// Returns an iterator over `Ipv4Network`. Each call to `next` will return the next /// `Ipv4Addr` in the given network. `None` will be returned when there are no more /// addresses. pub fn iter(&self) -> Ipv4NetworkIterator { let (_, start) = self.network(); let end = start as u64 + self.size(); Ipv4NetworkIterator { next: start as u64, end: end, } } pub fn ip(&self) -> Ipv4Addr { self.addr } pub fn prefix(&self) -> u8 { self.prefix } /// Returns the mask for this `Ipv4Network`. /// That means the `prefix` most significant bits will be 1 and the rest 0 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net = Ipv4Network::from_cidr("127.0.0.0/16").unwrap(); /// let (mask_ip, mask_u32) = net.mask(); /// assert_eq!(mask_ip, Ipv4Addr::new(255, 255, 0, 0)); /// assert_eq!(mask_u32, 0xffff0000); /// ``` pub fn mask(&self) -> (Ipv4Addr, u32) { let prefix = self.prefix; let mask = !(0xffffffff as u64 >> prefix) as u32; (Ipv4Addr::from(mask), mask) } /// Returns the address of the network denoted by this `Ipv4Network`. /// This means the lowest possible IPv4 address inside of the network. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net = Ipv4Network::from_cidr("10.1.9.32/16").unwrap(); /// let (net_ip, net_u32) = net.network(); /// assert_eq!(net_ip, Ipv4Addr::new(10, 1, 0, 0)); /// assert_eq!(net_u32, (10 << 24) + (1 << 16)); /// ``` pub fn network(&self) -> (Ipv4Addr, u32) { let (_, mask) = self.mask(); let ip = u32::from(self.addr) & mask; (Ipv4Addr::from(ip), ip) } /// Returns the broadcasting address of this `Ipv4Network`. /// This means the highest possible IPv4 address inside of the network. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net = Ipv4Network::from_cidr("10.9.0.32/16").unwrap(); /// let (bcast_ip, bcast_u32) = net.broadcast(); /// assert_eq!(bcast_ip, Ipv4Addr::new(10, 9, 255, 255)); /// assert_eq!(bcast_u32, (10 << 24) + (9 << 16) + 0xffff); /// ``` pub fn broadcast(&self) -> (Ipv4Addr, u32) { let (_, mask) = self.mask(); let broadcast = u32::from(self.addr) | !mask; (Ipv4Addr::from(broadcast), broadcast) } /// Checks if a given `Ipv4Addr` is in this `Ipv4Network` /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net = Ipv4Network::from_cidr("127.0.0.0/24").unwrap(); /// assert!(net.contains(Ipv4Addr::new(127, 0, 0, 70))); /// assert!(!net.contains(Ipv4Addr::new(127, 0, 1, 70))); /// ``` pub fn contains(&self, ip: Ipv4Addr) -> bool { let (_, net) = self.network(); let (_, mask) = self.mask(); (u32::from(ip) & mask) == net } /// Returns number of possible host addresses in this `Ipv4Network`. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net = Ipv4Network::from_cidr("10.1.0.0/16").unwrap(); /// assert_eq!(net.size(), 65536); /// /// let tinynet = Ipv4Network::from_cidr("0.0.0.0/32").unwrap(); /// assert_eq!(tinynet.size(), 1); /// ``` pub fn size(&self) -> u64 { let host_bits = (IPV4_BITS - self.prefix) as u32; (2 as u64).pow(host_bits) } /// Returns the `n`:th address within this network. /// The adresses are indexed from 0 and `n` must be smaller than the size of the network. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net = Ipv4Network::from_cidr("192.168.0.0/24").unwrap(); /// assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(192, 168, 0, 0)); /// assert_eq!(net.nth(15).unwrap(), Ipv4Addr::new(192, 168, 0, 15)); /// assert!(net.nth(256).is_none()); /// /// let net2 = Ipv4Network::from_cidr("10.0.0.0/16").unwrap(); /// assert_eq!(net2.nth(256).unwrap(), Ipv4Addr::new(10, 0, 1, 0)); /// ``` pub fn nth(&self, n: u32) -> Option { if (n as u64) < self.size() { let (_, net) = self.network(); Some(Ipv4Addr::from(net + n)) } else { None } } fn parse_addr(addr: &str) -> Result { let addr_parts = addr.split('.').map(|b| b.parse::()); let mut bytes = [0; 4]; for (i, byte) in addr_parts.enumerate() { if i >= 4 { return Err(IpNetworkError::InvalidAddr(format!("More than 4 bytes: {}", addr))); } bytes[i] = try!(byte.map_err(|_| { IpNetworkError::InvalidAddr(format!("All bytes not 0-255: {}", addr)) })); } Ok(Ipv4Addr::new(bytes[0], bytes[1], bytes[2], bytes[3])) } } impl fmt::Display for Ipv4Network { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "{}/{}", self.ip(), self.prefix()) } } pub struct Ipv4NetworkIterator { next: u64, end: u64, } impl Iterator for Ipv4NetworkIterator { type Item = Ipv4Addr; fn next(&mut self) -> Option { if self.next < self.end { let next = Ipv4Addr::from(self.next as u32); self.next += 1; Some(next) } else { None } } } #[cfg(test)] mod test { use std::mem; use std::collections::HashMap; use std::net::Ipv4Addr; use super::*; #[test] fn create_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap(); assert_eq!(cidr.prefix(), 24); } #[test] fn create_v4_invalid_prefix() { let net = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 33); assert!(net.is_err()); } #[test] fn parse_v4_0bit() { let cidr = Ipv4Network::from_cidr("0/0").unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(0, 0, 0, 0)); assert_eq!(cidr.prefix(), 0); } #[test] fn parse_v4_24bit() { let cidr = Ipv4Network::from_cidr("127.1.0.0/24").unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(127, 1, 0, 0)); assert_eq!(cidr.prefix(), 24); } #[test] fn parse_v4_32bit() { let cidr = Ipv4Network::from_cidr("127.0.0.0/32").unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0)); assert_eq!(cidr.prefix(), 32); } #[test] fn parse_v4_fail_addr() { let cidr = Ipv4Network::from_cidr("10.a.b/8"); assert!(cidr.is_err()); } #[test] fn parse_v4_fail_addr2() { let cidr = Ipv4Network::from_cidr("10.1.1.1.0/8"); assert!(cidr.is_err()); } #[test] fn parse_v4_fail_addr3() { let cidr = Ipv4Network::from_cidr("256/8"); assert!(cidr.is_err()); } #[test] fn parse_v4_non_zero_host_bits() { let cidr = Ipv4Network::from_cidr("10.1.1.1/24").unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(10, 1, 1, 1)); assert_eq!(cidr.prefix(), 24); } #[test] fn parse_v4_fail_prefix() { let cidr = Ipv4Network::from_cidr("0/39"); assert!(cidr.is_err()); } #[test] fn size_v4_24bit() { let net = Ipv4Network::from_cidr("0/24").unwrap(); assert_eq!(net.size(), 256); } #[test] fn size_v4_1bit() { let net = Ipv4Network::from_cidr("0/31").unwrap(); assert_eq!(net.size(), 2); } #[test] fn size_v4_max() { let net = Ipv4Network::from_cidr("0/0").unwrap(); assert_eq!(net.size(), 4_294_967_296); } #[test] fn size_v4_min() { let net = Ipv4Network::from_cidr("0/32").unwrap(); assert_eq!(net.size(), 1); } #[test] fn nth_v4() { let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 24).unwrap(); assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(127, 0, 0, 0)); assert_eq!(net.nth(1).unwrap(), Ipv4Addr::new(127, 0, 0, 1)); assert_eq!(net.nth(255).unwrap(), Ipv4Addr::new(127, 0, 0, 255)); assert!(net.nth(256).is_none()); } #[test] fn nth_v4_fail() { let net = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 0), 32).unwrap(); assert!(net.nth(1).is_none()); } #[test] fn hash_eq_compatibility_v4() { let mut map = HashMap::new(); let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap(); map.insert(net, 137); let out = map.get(&net).unwrap(); assert_eq!(137, *out); } #[test] fn copy_compatibility_v4() { let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap(); mem::drop(net); assert_eq!(16, net.prefix()); } #[test] fn mask_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 29).unwrap(); let (ip, int) = cidr.mask(); assert_eq!(ip, Ipv4Addr::new(255, 255, 255, 248)); assert_eq!(int, 4294967288); } #[test] fn network_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap(); let (ip, int) = cidr.network(); assert_eq!(ip, Ipv4Addr::new(10, 10, 0, 0)); assert_eq!(int, 168427520); } #[test] fn broadcast_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap(); let (ip, int) = cidr.broadcast(); assert_eq!(ip, Ipv4Addr::new(10, 10, 1, 255)); assert_eq!(int, 168428031); } #[test] fn contains_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 25).unwrap(); let ip = Ipv4Addr::new(74, 125, 227, 4); assert!(cidr.contains(ip)); } #[test] fn not_contains_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 50), 24).unwrap(); let ip = Ipv4Addr::new(10, 1, 0, 1); assert!(!cidr.contains(ip)); } #[test] fn iterator_v4() { let cidr = Ipv4Network::from_cidr("192.168.122.0/30").unwrap(); let mut iter = cidr.iter(); assert_eq!(Ipv4Addr::new(192, 168, 122, 0), iter.next().unwrap()); assert_eq!(Ipv4Addr::new(192, 168, 122, 1), iter.next().unwrap()); assert_eq!(Ipv4Addr::new(192, 168, 122, 2), iter.next().unwrap()); assert_eq!(Ipv4Addr::new(192, 168, 122, 3), iter.next().unwrap()); assert_eq!(None, iter.next()); } #[test] fn iterator_v4_tiny() { let cidr = Ipv4Network::from_cidr("10/32").unwrap(); let mut iter = cidr.iter(); assert_eq!(Ipv4Addr::new(10, 0, 0, 0), iter.next().unwrap()); assert_eq!(None, iter.next()); } // Tests the entire IPv4 space to see if the iterator will stop at the correct place // and not overflow or wrap around. Ignored since it takes a long time to run. #[test] #[ignore] fn iterator_v4_huge() { let cidr = Ipv4Network::from_cidr("0/0").unwrap(); let mut iter = cidr.iter(); for i in 0..(u32::max_value() as u64 + 1) { assert_eq!(i as u32, u32::from(iter.next().unwrap())); } assert_eq!(None, iter.next()); } }