use std::fmt; use std::net::Ipv4Addr; use std::str::FromStr; #[cfg(feature = "serde")] use serde::{de, Deserialize, Deserializer, Serialize, Serializer}; use common::{cidr_parts, parse_addr, parse_prefix, IpNetworkError}; const IPV4_BITS: u8 = 32; /// Represents a network range where the IP addresses are of v4 #[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct Ipv4Network { addr: Ipv4Addr, prefix: u8, } #[cfg(feature = "serde")] impl<'de> Deserialize<'de> for Ipv4Network { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { let s = <&str>::deserialize(deserializer)?; Ipv4Network::from_str(s).map_err(de::Error::custom) } } #[cfg(feature = "serde")] impl Serialize for Ipv4Network { fn serialize(&self, serializer: S) -> Result where S: Serializer, { serializer.serialize_str(&self.to_string()) } } impl Ipv4Network { /// Constructs a new `Ipv4Network` from any `Ipv4Addr` and a prefix denoting the network size. /// If the prefix is larger than 32 this will return an `IpNetworkError::InvalidPrefix`. pub fn new(addr: Ipv4Addr, prefix: u8) -> Result { if prefix > IPV4_BITS { Err(IpNetworkError::InvalidPrefix) } else { Ok(Ipv4Network { addr: addr, prefix: prefix, }) } } /// Returns an iterator over `Ipv4Network`. Each call to `next` will return the next /// `Ipv4Addr` in the given network. `None` will be returned when there are no more /// addresses. pub fn iter(&self) -> Ipv4NetworkIterator { let start = u64::from(u32::from(self.network())); let end = start + self.size(); Ipv4NetworkIterator { next: start, end: end, } } pub fn ip(&self) -> Ipv4Addr { self.addr } pub fn prefix(&self) -> u8 { self.prefix } /// Returns the mask for this `Ipv4Network`. /// That means the `prefix` most significant bits will be 1 and the rest 0 /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net: Ipv4Network = "127.0.0.0".parse().unwrap(); /// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 255, 255)); /// let net: Ipv4Network = "127.0.0.0/16".parse().unwrap(); /// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 0, 0)); /// ``` pub fn mask(&self) -> Ipv4Addr { let prefix = self.prefix; let mask = !(0xffff_ffff as u64 >> prefix) as u32; Ipv4Addr::from(mask) } /// Returns the address of the network denoted by this `Ipv4Network`. /// This means the lowest possible IPv4 address inside of the network. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net: Ipv4Network = "10.1.9.32/16".parse().unwrap(); /// assert_eq!(net.network(), Ipv4Addr::new(10, 1, 0, 0)); /// ``` pub fn network(&self) -> Ipv4Addr { let mask = u32::from(self.mask()); let ip = u32::from(self.addr) & mask; Ipv4Addr::from(ip) } /// Returns the broadcasting address of this `Ipv4Network`. /// This means the highest possible IPv4 address inside of the network. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net: Ipv4Network = "10.9.0.32/16".parse().unwrap(); /// assert_eq!(net.broadcast(), Ipv4Addr::new(10, 9, 255, 255)); /// ``` pub fn broadcast(&self) -> Ipv4Addr { let mask = u32::from(self.mask()); let broadcast = u32::from(self.addr) | !mask; Ipv4Addr::from(broadcast) } /// Checks if a given `Ipv4Addr` is in this `Ipv4Network` /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net: Ipv4Network = "127.0.0.0/24".parse().unwrap(); /// assert!(net.contains(Ipv4Addr::new(127, 0, 0, 70))); /// assert!(!net.contains(Ipv4Addr::new(127, 0, 1, 70))); /// ``` pub fn contains(&self, ip: Ipv4Addr) -> bool { let net = u32::from(self.network()); let mask = u32::from(self.mask()); (u32::from(ip) & mask) == net } /// Returns number of possible host addresses in this `Ipv4Network`. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net: Ipv4Network = "10.1.0.0/16".parse().unwrap(); /// assert_eq!(net.size(), 65536); /// /// let tinynet: Ipv4Network = "0.0.0.0/32".parse().unwrap(); /// assert_eq!(tinynet.size(), 1); /// ``` pub fn size(&self) -> u64 { let host_bits = u32::from(IPV4_BITS - self.prefix); (2 as u64).pow(host_bits) } /// Returns the `n`:th address within this network. /// The adresses are indexed from 0 and `n` must be smaller than the size of the network. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let net: Ipv4Network = "192.168.0.0/24".parse().unwrap(); /// assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(192, 168, 0, 0)); /// assert_eq!(net.nth(15).unwrap(), Ipv4Addr::new(192, 168, 0, 15)); /// assert!(net.nth(256).is_none()); /// /// let net2: Ipv4Network = "10.0.0.0/16".parse().unwrap(); /// assert_eq!(net2.nth(256).unwrap(), Ipv4Addr::new(10, 0, 1, 0)); /// ``` pub fn nth(&self, n: u32) -> Option { if u64::from(n) < self.size() { let net = u32::from(self.network()); Some(Ipv4Addr::from(net + n)) } else { None } } } impl fmt::Display for Ipv4Network { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { write!(fmt, "{}/{}", self.ip(), self.prefix()) } } /// Creates an `Ipv4Network` from parsing a string in CIDR notation. /// /// # Examples /// /// ``` /// use std::net::Ipv4Addr; /// use ipnetwork::Ipv4Network; /// /// let new = Ipv4Network::new(Ipv4Addr::new(10, 1, 9, 32), 16).unwrap(); /// let from_cidr: Ipv4Network = "10.1.9.32/16".parse().unwrap(); /// assert_eq!(new.ip(), from_cidr.ip()); /// assert_eq!(new.prefix(), from_cidr.prefix()); /// ``` impl FromStr for Ipv4Network { type Err = IpNetworkError; fn from_str(s: &str) -> Result { let (addr_str, prefix_str) = cidr_parts(s)?; let addr = parse_addr(addr_str)?; let prefix = match prefix_str { Some(v) => parse_prefix(v, IPV4_BITS)?, None => IPV4_BITS, }; Ipv4Network::new(addr, prefix) } } impl From for Ipv4Network { fn from(a: Ipv4Addr) -> Ipv4Network { Ipv4Network { addr: a, prefix: 32, } } } pub struct Ipv4NetworkIterator { next: u64, end: u64, } impl Iterator for Ipv4NetworkIterator { type Item = Ipv4Addr; fn next(&mut self) -> Option { if self.next < self.end { let next = Ipv4Addr::from(self.next as u32); self.next += 1; Some(next) } else { None } } } /// Converts a `Ipv4Addr` network mask into a prefix. /// If the mask is invalid this will return an `IpNetworkError::InvalidPrefix`. pub fn ipv4_mask_to_prefix(mask: Ipv4Addr) -> Result { let mask = u32::from(mask); let prefix = (!mask).leading_zeros() as u8; if ((mask as u64) << prefix) & 0xffff_ffff != 0 { Err(IpNetworkError::InvalidPrefix) } else { Ok(prefix) } } #[cfg(test)] mod test { use super::*; use std::collections::HashMap; use std::mem; use std::net::Ipv4Addr; #[test] fn create_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap(); assert_eq!(cidr.prefix(), 24); } #[test] fn create_v4_invalid_prefix() { let net = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 33); assert!(net.is_err()); } #[test] fn parse_v4_0bit() { let cidr: Ipv4Network = "0/0".parse().unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(0, 0, 0, 0)); assert_eq!(cidr.prefix(), 0); } #[test] fn parse_v4_24bit() { let cidr: Ipv4Network = "127.1.0.0/24".parse().unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(127, 1, 0, 0)); assert_eq!(cidr.prefix(), 24); } #[test] fn parse_v4_32bit() { let cidr: Ipv4Network = "127.0.0.0/32".parse().unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0)); assert_eq!(cidr.prefix(), 32); } #[test] fn parse_v4_noprefix() { let cidr: Ipv4Network = "127.0.0.0".parse().unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0)); assert_eq!(cidr.prefix(), 32); } #[test] fn parse_v4_fail_addr() { let cidr: Option = "10.a.b/8".parse().ok(); assert_eq!(None, cidr); } #[test] fn parse_v4_fail_addr2() { let cidr: Option = "10.1.1.1.0/8".parse().ok(); assert_eq!(None, cidr); } #[test] fn parse_v4_fail_addr3() { let cidr: Option = "256/8".parse().ok(); assert_eq!(None, cidr); } #[test] fn parse_v4_non_zero_host_bits() { let cidr: Ipv4Network = "10.1.1.1/24".parse().unwrap(); assert_eq!(cidr.ip(), Ipv4Addr::new(10, 1, 1, 1)); assert_eq!(cidr.prefix(), 24); } #[test] fn parse_v4_fail_prefix() { let cidr: Option = "0/39".parse().ok(); assert_eq!(None, cidr); } #[test] fn parse_v4_fail_two_slashes() { let cidr: Option = "10.1.1.1/24/".parse().ok(); assert_eq!(None, cidr); } #[test] fn size_v4_24bit() { let net: Ipv4Network = "0/24".parse().unwrap(); assert_eq!(net.size(), 256); } #[test] fn size_v4_1bit() { let net: Ipv4Network = "0/31".parse().unwrap(); assert_eq!(net.size(), 2); } #[test] fn size_v4_max() { let net: Ipv4Network = "0/0".parse().unwrap(); assert_eq!(net.size(), 4_294_967_296); } #[test] fn size_v4_min() { let net: Ipv4Network = "0/32".parse().unwrap(); assert_eq!(net.size(), 1); } #[test] fn nth_v4() { let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 24).unwrap(); assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(127, 0, 0, 0)); assert_eq!(net.nth(1).unwrap(), Ipv4Addr::new(127, 0, 0, 1)); assert_eq!(net.nth(255).unwrap(), Ipv4Addr::new(127, 0, 0, 255)); assert!(net.nth(256).is_none()); } #[test] fn nth_v4_fail() { let net = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 0), 32).unwrap(); assert!(net.nth(1).is_none()); } #[test] fn hash_eq_compatibility_v4() { let mut map = HashMap::new(); let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap(); map.insert(net, 137); assert_eq!(137, map[&net]); } #[test] fn copy_compatibility_v4() { let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap(); mem::drop(net); assert_eq!(16, net.prefix()); } #[test] fn mask_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 29).unwrap(); let mask = cidr.mask(); assert_eq!(mask, Ipv4Addr::new(255, 255, 255, 248)); } #[test] fn network_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap(); let net = cidr.network(); assert_eq!(net, Ipv4Addr::new(10, 10, 0, 0)); } #[test] fn broadcast_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap(); let bcast = cidr.broadcast(); assert_eq!(bcast, Ipv4Addr::new(10, 10, 1, 255)); } #[test] fn contains_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 25).unwrap(); let ip = Ipv4Addr::new(74, 125, 227, 4); assert!(cidr.contains(ip)); } #[test] fn not_contains_v4() { let cidr = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 50), 24).unwrap(); let ip = Ipv4Addr::new(10, 1, 0, 1); assert!(!cidr.contains(ip)); } #[test] fn iterator_v4() { let cidr: Ipv4Network = "192.168.122.0/30".parse().unwrap(); let mut iter = cidr.iter(); assert_eq!(Ipv4Addr::new(192, 168, 122, 0), iter.next().unwrap()); assert_eq!(Ipv4Addr::new(192, 168, 122, 1), iter.next().unwrap()); assert_eq!(Ipv4Addr::new(192, 168, 122, 2), iter.next().unwrap()); assert_eq!(Ipv4Addr::new(192, 168, 122, 3), iter.next().unwrap()); assert_eq!(None, iter.next()); } #[test] fn iterator_v4_tiny() { let cidr: Ipv4Network = "10/32".parse().unwrap(); let mut iter = cidr.iter(); assert_eq!(Ipv4Addr::new(10, 0, 0, 0), iter.next().unwrap()); assert_eq!(None, iter.next()); } // Tests the entire IPv4 space to see if the iterator will stop at the correct place // and not overflow or wrap around. Ignored since it takes a long time to run. #[test] #[ignore] fn iterator_v4_huge() { let cidr: Ipv4Network = "0/0".parse().unwrap(); let mut iter = cidr.iter(); for i in 0..(u32::max_value() as u64 + 1) { assert_eq!(i as u32, u32::from(iter.next().unwrap())); } assert_eq!(None, iter.next()); } #[test] fn v4_mask_to_prefix() { let mask = Ipv4Addr::new(255, 255, 255, 128); let prefix = ipv4_mask_to_prefix(mask).unwrap(); assert_eq!(prefix, 25); } #[test] fn invalid_v4_mask_to_prefix() { let mask = Ipv4Addr::new(255, 0, 255, 0); let prefix = ipv4_mask_to_prefix(mask); assert!(prefix.is_err()); } #[test] fn ipv4network_from_ipv4addr() { let net = Ipv4Network::from(Ipv4Addr::new(127, 0, 0, 1)); let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 32).unwrap(); assert_eq!(net, expected); } #[test] fn test_send() { fn assert_send() {} assert_send::(); } #[test] fn test_sync() { fn assert_sync() {} assert_sync::(); } }