mirror of
https://github.com/achanda/ipnetwork.git
synced 2025-06-15 00:26:33 +00:00
700 lines
21 KiB
Rust
700 lines
21 KiB
Rust
use crate::common::{cidr_parts, parse_prefix, IpNetworkError};
|
|
use std::{convert::TryFrom, fmt, net::Ipv4Addr, str::FromStr};
|
|
|
|
const IPV4_BITS: u8 = 32;
|
|
|
|
/// Represents a network range where the IP addresses are of v4
|
|
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
|
|
pub struct Ipv4Network {
|
|
addr: Ipv4Addr,
|
|
prefix: u8,
|
|
}
|
|
|
|
#[cfg(feature = "serde")]
|
|
impl<'de> serde::Deserialize<'de> for Ipv4Network {
|
|
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
|
where
|
|
D: serde::Deserializer<'de>,
|
|
{
|
|
let s = <String>::deserialize(deserializer)?;
|
|
Ipv4Network::from_str(&s).map_err(serde::de::Error::custom)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde")]
|
|
impl serde::Serialize for Ipv4Network {
|
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
|
where
|
|
S: serde::Serializer,
|
|
{
|
|
serializer.collect_str(self)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "schemars")]
|
|
impl schemars::JsonSchema for Ipv4Network {
|
|
fn schema_name() -> String {
|
|
"Ipv4Network".to_string()
|
|
}
|
|
|
|
fn json_schema(_: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
|
|
schemars::schema::SchemaObject {
|
|
instance_type: Some(schemars::schema::InstanceType::String.into()),
|
|
string: Some(Box::new(schemars::schema::StringValidation {
|
|
pattern: Some(
|
|
concat!(
|
|
r#"^((25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}"#,
|
|
r#"(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)"#,
|
|
r#"\/(3[0-2]|[0-2]?[0-9])$"#,
|
|
)
|
|
.to_string(),
|
|
),
|
|
..Default::default()
|
|
})),
|
|
extensions: [("x-rust-type".to_string(), "ipnetwork::Ipv4Network".into())]
|
|
.iter()
|
|
.cloned()
|
|
.collect(),
|
|
..Default::default()
|
|
}
|
|
.into()
|
|
}
|
|
}
|
|
|
|
impl Ipv4Network {
|
|
/// Constructs a new `Ipv4Network` from any `Ipv4Addr` and a prefix denoting the network size.
|
|
///
|
|
/// If the prefix is larger than 32 this will return an `IpNetworkError::InvalidPrefix`.
|
|
pub const fn new(addr: Ipv4Addr, prefix: u8) -> Result<Ipv4Network, IpNetworkError> {
|
|
if prefix > IPV4_BITS {
|
|
Err(IpNetworkError::InvalidPrefix)
|
|
} else {
|
|
Ok(Ipv4Network { addr, prefix })
|
|
}
|
|
}
|
|
|
|
/// Constructs a new `Ipv4Network` from a network address and a network mask.
|
|
///
|
|
/// If the netmask is not valid this will return an `IpNetworkError::InvalidPrefix`.
|
|
pub fn with_netmask(
|
|
netaddr: Ipv4Addr,
|
|
netmask: Ipv4Addr,
|
|
) -> Result<Ipv4Network, IpNetworkError> {
|
|
let prefix = ipv4_mask_to_prefix(netmask)?;
|
|
let net = Self {
|
|
addr: netaddr,
|
|
prefix,
|
|
};
|
|
Ok(net)
|
|
}
|
|
|
|
/// Returns an iterator over `Ipv4Network`. Each call to `next` will return the next
|
|
/// `Ipv4Addr` in the given network. `None` will be returned when there are no more
|
|
/// addresses.
|
|
pub fn iter(self) -> Ipv4NetworkIterator {
|
|
let start = u32::from(self.network());
|
|
let end = start + (self.size() - 1);
|
|
Ipv4NetworkIterator {
|
|
next: Some(start),
|
|
end,
|
|
}
|
|
}
|
|
|
|
pub fn ip(self) -> Ipv4Addr {
|
|
self.addr
|
|
}
|
|
|
|
pub fn prefix(self) -> u8 {
|
|
self.prefix
|
|
}
|
|
|
|
/// Checks if the given `Ipv4Network` is a subnet of the other.
|
|
pub fn is_subnet_of(self, other: Ipv4Network) -> bool {
|
|
other.ip() <= self.ip() && other.broadcast() >= self.broadcast()
|
|
}
|
|
|
|
/// Checks if the given `Ipv4Network` is a supernet of the other.
|
|
pub fn is_supernet_of(self, other: Ipv4Network) -> bool {
|
|
other.is_subnet_of(self)
|
|
}
|
|
|
|
/// Checks if the given `Ipv4Network` is partly contained in other.
|
|
pub fn overlaps(self, other: Ipv4Network) -> bool {
|
|
other.contains(self.ip())
|
|
|| (other.contains(self.broadcast())
|
|
|| (self.contains(other.ip()) || (self.contains(other.broadcast()))))
|
|
}
|
|
|
|
/// Returns the mask for this `Ipv4Network`.
|
|
/// That means the `prefix` most significant bits will be 1 and the rest 0
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::net::Ipv4Addr;
|
|
/// use ipnetwork::Ipv4Network;
|
|
///
|
|
/// let net: Ipv4Network = "127.0.0.0".parse().unwrap();
|
|
/// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 255, 255));
|
|
/// let net: Ipv4Network = "127.0.0.0/16".parse().unwrap();
|
|
/// assert_eq!(net.mask(), Ipv4Addr::new(255, 255, 0, 0));
|
|
/// ```
|
|
pub fn mask(self) -> Ipv4Addr {
|
|
let prefix = self.prefix;
|
|
let mask = !(0xffff_ffff as u64 >> prefix) as u32;
|
|
Ipv4Addr::from(mask)
|
|
}
|
|
|
|
/// Returns the address of the network denoted by this `Ipv4Network`.
|
|
/// This means the lowest possible IPv4 address inside of the network.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::net::Ipv4Addr;
|
|
/// use ipnetwork::Ipv4Network;
|
|
///
|
|
/// let net: Ipv4Network = "10.1.9.32/16".parse().unwrap();
|
|
/// assert_eq!(net.network(), Ipv4Addr::new(10, 1, 0, 0));
|
|
/// ```
|
|
pub fn network(self) -> Ipv4Addr {
|
|
let mask = u32::from(self.mask());
|
|
let ip = u32::from(self.addr) & mask;
|
|
Ipv4Addr::from(ip)
|
|
}
|
|
|
|
/// Returns the broadcasting address of this `Ipv4Network`.
|
|
/// This means the highest possible IPv4 address inside of the network.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::net::Ipv4Addr;
|
|
/// use ipnetwork::Ipv4Network;
|
|
///
|
|
/// let net: Ipv4Network = "10.9.0.32/16".parse().unwrap();
|
|
/// assert_eq!(net.broadcast(), Ipv4Addr::new(10, 9, 255, 255));
|
|
/// ```
|
|
pub fn broadcast(self) -> Ipv4Addr {
|
|
let mask = u32::from(self.mask());
|
|
let broadcast = u32::from(self.addr) | !mask;
|
|
Ipv4Addr::from(broadcast)
|
|
}
|
|
|
|
/// Checks if a given `Ipv4Addr` is in this `Ipv4Network`
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::net::Ipv4Addr;
|
|
/// use ipnetwork::Ipv4Network;
|
|
///
|
|
/// let net: Ipv4Network = "127.0.0.0/24".parse().unwrap();
|
|
/// assert!(net.contains(Ipv4Addr::new(127, 0, 0, 70)));
|
|
/// assert!(!net.contains(Ipv4Addr::new(127, 0, 1, 70)));
|
|
/// ```
|
|
#[inline]
|
|
pub fn contains(self, ip: Ipv4Addr) -> bool {
|
|
let mask = !(0xffff_ffff as u64 >> self.prefix) as u32;
|
|
let net = u32::from(self.addr) & mask;
|
|
(u32::from(ip) & mask) == net
|
|
}
|
|
|
|
/// Returns number of possible host addresses in this `Ipv4Network`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::net::Ipv4Addr;
|
|
/// use ipnetwork::Ipv4Network;
|
|
///
|
|
/// let net: Ipv4Network = "10.1.0.0/16".parse().unwrap();
|
|
/// assert_eq!(net.size(), 65536);
|
|
///
|
|
/// let tinynet: Ipv4Network = "0.0.0.0/32".parse().unwrap();
|
|
/// assert_eq!(tinynet.size(), 1);
|
|
/// ```
|
|
pub fn size(self) -> u32 {
|
|
1 << (u32::from(IPV4_BITS - self.prefix))
|
|
}
|
|
|
|
/// Returns the `n`:th address within this network.
|
|
/// The adresses are indexed from 0 and `n` must be smaller than the size of the network.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::net::Ipv4Addr;
|
|
/// use ipnetwork::Ipv4Network;
|
|
///
|
|
/// let net: Ipv4Network = "192.168.0.0/24".parse().unwrap();
|
|
/// assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(192, 168, 0, 0));
|
|
/// assert_eq!(net.nth(15).unwrap(), Ipv4Addr::new(192, 168, 0, 15));
|
|
/// assert!(net.nth(256).is_none());
|
|
///
|
|
/// let net2: Ipv4Network = "10.0.0.0/16".parse().unwrap();
|
|
/// assert_eq!(net2.nth(256).unwrap(), Ipv4Addr::new(10, 0, 1, 0));
|
|
/// ```
|
|
pub fn nth(self, n: u32) -> Option<Ipv4Addr> {
|
|
if n < self.size() {
|
|
let net = u32::from(self.network());
|
|
Some(Ipv4Addr::from(net + n))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for Ipv4Network {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
write!(fmt, "{}/{}", self.ip(), self.prefix())
|
|
}
|
|
}
|
|
|
|
/// Creates an `Ipv4Network` from parsing a string in CIDR notation.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::net::Ipv4Addr;
|
|
/// use ipnetwork::Ipv4Network;
|
|
///
|
|
/// let new = Ipv4Network::new(Ipv4Addr::new(10, 1, 9, 32), 16).unwrap();
|
|
/// let from_cidr: Ipv4Network = "10.1.9.32/16".parse().unwrap();
|
|
/// assert_eq!(new.ip(), from_cidr.ip());
|
|
/// assert_eq!(new.prefix(), from_cidr.prefix());
|
|
/// ```
|
|
impl FromStr for Ipv4Network {
|
|
type Err = IpNetworkError;
|
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
|
let (addr_str, prefix_str) = cidr_parts(s)?;
|
|
let addr = Ipv4Addr::from_str(addr_str)
|
|
.map_err(|_| IpNetworkError::InvalidAddr(addr_str.to_string()))?;
|
|
let prefix = match prefix_str {
|
|
Some(v) => {
|
|
if let Ok(netmask) = Ipv4Addr::from_str(v) {
|
|
ipv4_mask_to_prefix(netmask)?
|
|
} else {
|
|
parse_prefix(v, IPV4_BITS)?
|
|
}
|
|
}
|
|
None => IPV4_BITS,
|
|
};
|
|
Ipv4Network::new(addr, prefix)
|
|
}
|
|
}
|
|
|
|
impl TryFrom<&str> for Ipv4Network {
|
|
type Error = IpNetworkError;
|
|
|
|
fn try_from(s: &str) -> Result<Self, Self::Error> {
|
|
Ipv4Network::from_str(s)
|
|
}
|
|
}
|
|
|
|
impl From<Ipv4Addr> for Ipv4Network {
|
|
fn from(a: Ipv4Addr) -> Ipv4Network {
|
|
Ipv4Network {
|
|
addr: a,
|
|
prefix: 32,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub struct Ipv4NetworkIterator {
|
|
next: Option<u32>,
|
|
end: u32,
|
|
}
|
|
|
|
impl Iterator for Ipv4NetworkIterator {
|
|
type Item = Ipv4Addr;
|
|
|
|
fn next(&mut self) -> Option<Ipv4Addr> {
|
|
let next = self.next?;
|
|
self.next = if next == self.end {
|
|
None
|
|
} else {
|
|
Some(next + 1)
|
|
};
|
|
Some(next.into())
|
|
}
|
|
}
|
|
|
|
impl IntoIterator for &'_ Ipv4Network {
|
|
type IntoIter = Ipv4NetworkIterator;
|
|
type Item = Ipv4Addr;
|
|
fn into_iter(self) -> Ipv4NetworkIterator {
|
|
self.iter()
|
|
}
|
|
}
|
|
|
|
/// Converts a `Ipv4Addr` network mask into a prefix.
|
|
///
|
|
/// If the mask is invalid this will return an `IpNetworkError::InvalidPrefix`.
|
|
pub fn ipv4_mask_to_prefix(mask: Ipv4Addr) -> Result<u8, IpNetworkError> {
|
|
let mask = u32::from(mask);
|
|
|
|
let prefix = (!mask).leading_zeros() as u8;
|
|
if (u64::from(mask) << prefix) & 0xffff_ffff != 0 {
|
|
Err(IpNetworkError::InvalidPrefix)
|
|
} else {
|
|
Ok(prefix)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::*;
|
|
use std::collections::HashMap;
|
|
use std::mem;
|
|
use std::net::Ipv4Addr;
|
|
|
|
#[test]
|
|
fn create_v4() {
|
|
let cidr = Ipv4Network::new(Ipv4Addr::new(77, 88, 21, 11), 24).unwrap();
|
|
assert_eq!(cidr.prefix(), 24);
|
|
}
|
|
|
|
#[test]
|
|
fn create_v4_invalid_prefix() {
|
|
let net = Ipv4Network::new(Ipv4Addr::new(0, 0, 0, 0), 33);
|
|
assert!(net.is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_24bit() {
|
|
let cidr: Ipv4Network = "127.1.0.0/24".parse().unwrap();
|
|
assert_eq!(cidr.ip(), Ipv4Addr::new(127, 1, 0, 0));
|
|
assert_eq!(cidr.prefix(), 24);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_32bit() {
|
|
let cidr: Ipv4Network = "127.0.0.0/32".parse().unwrap();
|
|
assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
|
|
assert_eq!(cidr.prefix(), 32);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_noprefix() {
|
|
let cidr: Ipv4Network = "127.0.0.0".parse().unwrap();
|
|
assert_eq!(cidr.ip(), Ipv4Addr::new(127, 0, 0, 0));
|
|
assert_eq!(cidr.prefix(), 32);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_fail_addr() {
|
|
let cidr: Option<Ipv4Network> = "10.a.b/8".parse().ok();
|
|
assert_eq!(None, cidr);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_fail_addr2() {
|
|
let cidr: Option<Ipv4Network> = "10.1.1.1.0/8".parse().ok();
|
|
assert_eq!(None, cidr);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_fail_addr3() {
|
|
let cidr: Option<Ipv4Network> = "256/8".parse().ok();
|
|
assert_eq!(None, cidr);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_non_zero_host_bits() {
|
|
let cidr: Ipv4Network = "10.1.1.1/24".parse().unwrap();
|
|
assert_eq!(cidr.ip(), Ipv4Addr::new(10, 1, 1, 1));
|
|
assert_eq!(cidr.prefix(), 24);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_fail_prefix() {
|
|
let cidr: Option<Ipv4Network> = "0/39".parse().ok();
|
|
assert_eq!(None, cidr);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_v4_fail_two_slashes() {
|
|
let cidr: Option<Ipv4Network> = "10.1.1.1/24/".parse().ok();
|
|
assert_eq!(None, cidr);
|
|
}
|
|
|
|
#[test]
|
|
fn nth_v4() {
|
|
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 0), 24).unwrap();
|
|
assert_eq!(net.nth(0).unwrap(), Ipv4Addr::new(127, 0, 0, 0));
|
|
assert_eq!(net.nth(1).unwrap(), Ipv4Addr::new(127, 0, 0, 1));
|
|
assert_eq!(net.nth(255).unwrap(), Ipv4Addr::new(127, 0, 0, 255));
|
|
assert!(net.nth(256).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn nth_v4_fail() {
|
|
let net = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 0), 32).unwrap();
|
|
assert!(net.nth(1).is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn hash_eq_compatibility_v4() {
|
|
let mut map = HashMap::new();
|
|
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
|
|
map.insert(net, 137);
|
|
assert_eq!(137, map[&net]);
|
|
}
|
|
|
|
#[test]
|
|
fn copy_compatibility_v4() {
|
|
let net = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 16).unwrap();
|
|
mem::drop(net);
|
|
assert_eq!(16, net.prefix());
|
|
}
|
|
|
|
#[test]
|
|
fn mask_v4() {
|
|
let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 29).unwrap();
|
|
let mask = cidr.mask();
|
|
assert_eq!(mask, Ipv4Addr::new(255, 255, 255, 248));
|
|
}
|
|
|
|
#[test]
|
|
fn network_v4() {
|
|
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
|
|
let net = cidr.network();
|
|
assert_eq!(net, Ipv4Addr::new(10, 10, 0, 0));
|
|
}
|
|
|
|
#[test]
|
|
fn broadcast_v4() {
|
|
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 10, 1, 97), 23).unwrap();
|
|
let bcast = cidr.broadcast();
|
|
assert_eq!(bcast, Ipv4Addr::new(10, 10, 1, 255));
|
|
}
|
|
|
|
#[test]
|
|
fn contains_v4() {
|
|
let cidr = Ipv4Network::new(Ipv4Addr::new(74, 125, 227, 0), 25).unwrap();
|
|
let ip = Ipv4Addr::new(74, 125, 227, 4);
|
|
assert!(cidr.contains(ip));
|
|
}
|
|
|
|
#[test]
|
|
fn not_contains_v4() {
|
|
let cidr = Ipv4Network::new(Ipv4Addr::new(10, 0, 0, 50), 24).unwrap();
|
|
let ip = Ipv4Addr::new(10, 1, 0, 1);
|
|
assert!(!cidr.contains(ip));
|
|
}
|
|
|
|
#[test]
|
|
fn iterator_v4() {
|
|
let cidr: Ipv4Network = "192.168.122.0/30".parse().unwrap();
|
|
let mut iter = cidr.iter();
|
|
assert_eq!(Ipv4Addr::new(192, 168, 122, 0), iter.next().unwrap());
|
|
assert_eq!(Ipv4Addr::new(192, 168, 122, 1), iter.next().unwrap());
|
|
assert_eq!(Ipv4Addr::new(192, 168, 122, 2), iter.next().unwrap());
|
|
assert_eq!(Ipv4Addr::new(192, 168, 122, 3), iter.next().unwrap());
|
|
assert_eq!(None, iter.next());
|
|
}
|
|
|
|
// Tests the entire IPv4 space to see if the iterator will stop at the correct place
|
|
// and not overflow or wrap around. Ignored since it takes a long time to run.
|
|
#[test]
|
|
#[ignore]
|
|
fn iterator_v4_huge() {
|
|
let cidr: Ipv4Network = "0/0".parse().unwrap();
|
|
let mut iter = cidr.iter();
|
|
for i in 0..(u32::max_value() as u64 + 1) {
|
|
assert_eq!(i as u32, u32::from(iter.next().unwrap()));
|
|
}
|
|
assert_eq!(None, iter.next());
|
|
}
|
|
|
|
#[test]
|
|
fn v4_mask_to_prefix() {
|
|
let mask = Ipv4Addr::new(255, 255, 255, 128);
|
|
let prefix = ipv4_mask_to_prefix(mask).unwrap();
|
|
assert_eq!(prefix, 25);
|
|
}
|
|
|
|
/// Parse netmask as well as prefix
|
|
#[test]
|
|
fn parse_netmask() {
|
|
let from_netmask: Ipv4Network = "192.168.1.0/255.255.255.0".parse().unwrap();
|
|
let from_prefix: Ipv4Network = "192.168.1.0/24".parse().unwrap();
|
|
assert_eq!(from_netmask, from_prefix);
|
|
}
|
|
|
|
#[test]
|
|
fn parse_netmask_broken_v4() {
|
|
assert_eq!(
|
|
"192.168.1.0/255.0.255.0".parse::<Ipv4Network>(),
|
|
Err(IpNetworkError::InvalidPrefix)
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn invalid_v4_mask_to_prefix() {
|
|
let mask = Ipv4Addr::new(255, 0, 255, 0);
|
|
let prefix = ipv4_mask_to_prefix(mask);
|
|
assert!(prefix.is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn ipv4network_with_netmask() {
|
|
{
|
|
// Positive test-case.
|
|
let addr = Ipv4Addr::new(127, 0, 0, 1);
|
|
let mask = Ipv4Addr::new(255, 0, 0, 0);
|
|
let net = Ipv4Network::with_netmask(addr, mask).unwrap();
|
|
let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 8).unwrap();
|
|
assert_eq!(net, expected);
|
|
}
|
|
{
|
|
// Negative test-case.
|
|
let addr = Ipv4Addr::new(127, 0, 0, 1);
|
|
let mask = Ipv4Addr::new(255, 0, 255, 0);
|
|
Ipv4Network::with_netmask(addr, mask).unwrap_err();
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn ipv4network_from_ipv4addr() {
|
|
let net = Ipv4Network::from(Ipv4Addr::new(127, 0, 0, 1));
|
|
let expected = Ipv4Network::new(Ipv4Addr::new(127, 0, 0, 1), 32).unwrap();
|
|
assert_eq!(net, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn test_send() {
|
|
fn assert_send<T: Send>() {}
|
|
assert_send::<Ipv4Network>();
|
|
}
|
|
|
|
#[test]
|
|
fn test_sync() {
|
|
fn assert_sync<T: Sync>() {}
|
|
assert_sync::<Ipv4Network>();
|
|
}
|
|
|
|
// Tests from cpython https://github.com/python/cpython/blob/e9bc4172d18db9c182d8e04dd7b033097a994c06/Lib/test/test_ipaddress.py
|
|
#[test]
|
|
fn test_is_subnet_of() {
|
|
let mut test_cases: HashMap<(Ipv4Network, Ipv4Network), bool> = HashMap::new();
|
|
|
|
test_cases.insert(
|
|
(
|
|
"10.0.0.0/30".parse().unwrap(),
|
|
"10.0.1.0/24".parse().unwrap(),
|
|
),
|
|
false,
|
|
);
|
|
test_cases.insert(
|
|
(
|
|
"10.0.0.0/30".parse().unwrap(),
|
|
"10.0.0.0/24".parse().unwrap(),
|
|
),
|
|
true,
|
|
);
|
|
test_cases.insert(
|
|
(
|
|
"10.0.0.0/30".parse().unwrap(),
|
|
"10.0.1.0/24".parse().unwrap(),
|
|
),
|
|
false,
|
|
);
|
|
test_cases.insert(
|
|
(
|
|
"10.0.1.0/24".parse().unwrap(),
|
|
"10.0.0.0/30".parse().unwrap(),
|
|
),
|
|
false,
|
|
);
|
|
|
|
for (key, val) in test_cases.iter() {
|
|
let (src, dest) = (key.0, key.1);
|
|
assert_eq!(
|
|
src.is_subnet_of(dest),
|
|
*val,
|
|
"testing with {} and {}",
|
|
src,
|
|
dest
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_supernet_of() {
|
|
let mut test_cases: HashMap<(Ipv4Network, Ipv4Network), bool> = HashMap::new();
|
|
|
|
test_cases.insert(
|
|
(
|
|
"10.0.0.0/30".parse().unwrap(),
|
|
"10.0.1.0/24".parse().unwrap(),
|
|
),
|
|
false,
|
|
);
|
|
test_cases.insert(
|
|
(
|
|
"10.0.0.0/30".parse().unwrap(),
|
|
"10.0.0.0/24".parse().unwrap(),
|
|
),
|
|
false,
|
|
);
|
|
test_cases.insert(
|
|
(
|
|
"10.0.0.0/30".parse().unwrap(),
|
|
"10.0.1.0/24".parse().unwrap(),
|
|
),
|
|
false,
|
|
);
|
|
test_cases.insert(
|
|
(
|
|
"10.0.0.0/24".parse().unwrap(),
|
|
"10.0.0.0/30".parse().unwrap(),
|
|
),
|
|
true,
|
|
);
|
|
|
|
for (key, val) in test_cases.iter() {
|
|
let (src, dest) = (key.0, key.1);
|
|
assert_eq!(
|
|
src.is_supernet_of(dest),
|
|
*val,
|
|
"testing with {} and {}",
|
|
src,
|
|
dest
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_overlaps() {
|
|
let other: Ipv4Network = "1.2.3.0/30".parse().unwrap();
|
|
let other2: Ipv4Network = "1.2.2.0/24".parse().unwrap();
|
|
let other3: Ipv4Network = "1.2.2.64/26".parse().unwrap();
|
|
|
|
let skynet: Ipv4Network = "1.2.3.0/24".parse().unwrap();
|
|
assert_eq!(skynet.overlaps(other), true);
|
|
assert_eq!(skynet.overlaps(other2), false);
|
|
assert_eq!(other2.overlaps(other3), true);
|
|
}
|
|
|
|
#[test]
|
|
fn edges() {
|
|
let low: Ipv4Network = "0.0.0.0/24".parse().unwrap();
|
|
let low_addrs: Vec<Ipv4Addr> = low.iter().collect();
|
|
assert_eq!(256, low_addrs.len());
|
|
assert_eq!("0.0.0.0".parse::<Ipv4Addr>().unwrap(), low_addrs[0]);
|
|
assert_eq!("0.0.0.255".parse::<Ipv4Addr>().unwrap(), low_addrs[255]);
|
|
|
|
let high: Ipv4Network = "255.255.255.0/24".parse().unwrap();
|
|
let high_addrs: Vec<Ipv4Addr> = high.iter().collect();
|
|
assert_eq!(256, high_addrs.len());
|
|
assert_eq!("255.255.255.0".parse::<Ipv4Addr>().unwrap(), high_addrs[0]);
|
|
assert_eq!(
|
|
"255.255.255.255".parse::<Ipv4Addr>().unwrap(),
|
|
high_addrs[255]
|
|
);
|
|
}
|
|
}
|