FFmpeg/libavfilter/vf_geq.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

533 lines
21 KiB
C

/*
* Copyright (C) 2006 Michael Niedermayer <michaelni@gmx.at>
* Copyright (C) 2012 Clément Bœsch <u pkh me>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* Generic equation change filter
* Originally written by Michael Niedermayer for the MPlayer project, and
* ported by Clément Bœsch for FFmpeg.
*/
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
#include "libavutil/eval.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "formats.h"
#include "internal.h"
#include "video.h"
#define MAX_NB_THREADS 32
#define NB_PLANES 4
enum InterpolationMethods {
INTERP_NEAREST,
INTERP_BILINEAR,
NB_INTERP
};
static const char *const var_names[] = { "X", "Y", "W", "H", "N", "SW", "SH", "T", NULL };
enum { VAR_X, VAR_Y, VAR_W, VAR_H, VAR_N, VAR_SW, VAR_SH, VAR_T, VAR_VARS_NB };
typedef struct GEQContext {
const AVClass *class;
AVExpr *e[NB_PLANES][MAX_NB_THREADS]; ///< expressions for each plane and thread
char *expr_str[4+3]; ///< expression strings for each plane
AVFrame *picref; ///< current input buffer
uint8_t *dst; ///< reference pointer to the 8bits output
uint16_t *dst16; ///< reference pointer to the 16bits output
float *dst32; ///< reference pointer to the 32bits output
double values[VAR_VARS_NB]; ///< expression values
int hsub, vsub; ///< chroma subsampling
int planes; ///< number of planes
int interpolation;
int is_rgb;
int bps;
double *pixel_sums[NB_PLANES];
int needs_sum[NB_PLANES];
} GEQContext;
enum { Y = 0, U, V, A, G, B, R };
#define OFFSET(x) offsetof(GEQContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
static const AVOption geq_options[] = {
{ "lum_expr", "set luminance expression", OFFSET(expr_str[Y]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "lum", "set luminance expression", OFFSET(expr_str[Y]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "cb_expr", "set chroma blue expression", OFFSET(expr_str[U]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "cb", "set chroma blue expression", OFFSET(expr_str[U]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "cr_expr", "set chroma red expression", OFFSET(expr_str[V]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "cr", "set chroma red expression", OFFSET(expr_str[V]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "alpha_expr", "set alpha expression", OFFSET(expr_str[A]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "a", "set alpha expression", OFFSET(expr_str[A]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "red_expr", "set red expression", OFFSET(expr_str[R]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "r", "set red expression", OFFSET(expr_str[R]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "green_expr", "set green expression", OFFSET(expr_str[G]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "g", "set green expression", OFFSET(expr_str[G]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "blue_expr", "set blue expression", OFFSET(expr_str[B]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "b", "set blue expression", OFFSET(expr_str[B]), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS },
{ "interpolation","set interpolation method", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERP_BILINEAR}, 0, NB_INTERP-1, FLAGS, .unit = "interp" },
{ "i", "set interpolation method", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERP_BILINEAR}, 0, NB_INTERP-1, FLAGS, .unit = "interp" },
{ "nearest", "nearest interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_NEAREST}, 0, 0, FLAGS, .unit = "interp" },
{ "n", "nearest interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_NEAREST}, 0, 0, FLAGS, .unit = "interp" },
{ "bilinear", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_BILINEAR}, 0, 0, FLAGS, .unit = "interp" },
{ "b", "bilinear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERP_BILINEAR}, 0, 0, FLAGS, .unit = "interp" },
{NULL},
};
AVFILTER_DEFINE_CLASS(geq);
static inline double getpix(void *priv, double x, double y, int plane)
{
int xi, yi;
GEQContext *geq = priv;
AVFrame *picref = geq->picref;
const uint8_t *src = picref->data[plane];
int linesize = picref->linesize[plane];
const int w = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(picref->width, geq->hsub) : picref->width;
const int h = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(picref->height, geq->vsub) : picref->height;
if (!src)
return 0;
if (geq->interpolation == INTERP_BILINEAR) {
xi = x = av_clipd(x, 0, w - 2);
yi = y = av_clipd(y, 0, h - 2);
x -= xi;
y -= yi;
if (geq->bps > 8 && geq->bps <= 16) {
const uint16_t *src16 = (const uint16_t*)src;
linesize /= 2;
return (1-y)*((1-x)*src16[xi + yi * linesize] + x*src16[xi + 1 + yi * linesize])
+ y *((1-x)*src16[xi + (yi+1) * linesize] + x*src16[xi + 1 + (yi+1) * linesize]);
} else if (geq->bps == 32) {
const float *src32 = (const float*)src;
linesize /= 4;
return (1-y)*((1-x)*src32[xi + yi * linesize] + x*src32[xi + 1 + yi * linesize])
+ y *((1-x)*src32[xi + (yi+1) * linesize] + x*src32[xi + 1 + (yi+1) * linesize]);
} else if (geq->bps == 8) {
return (1-y)*((1-x)*src[xi + yi * linesize] + x*src[xi + 1 + yi * linesize])
+ y *((1-x)*src[xi + (yi+1) * linesize] + x*src[xi + 1 + (yi+1) * linesize]);
}
} else {
xi = av_clipd(x, 0, w - 1);
yi = av_clipd(y, 0, h - 1);
if (geq->bps > 8 && geq->bps <= 16) {
const uint16_t *src16 = (const uint16_t*)src;
linesize /= 2;
return src16[xi + yi * linesize];
} else if (geq->bps == 32) {
const float *src32 = (const float*)src;
linesize /= 4;
return src32[xi + yi * linesize];
} else if (geq->bps == 8) {
return src[xi + yi * linesize];
}
}
return 0;
}
static int calculate_sums(GEQContext *geq, int plane, int w, int h)
{
int xi, yi;
AVFrame *picref = geq->picref;
const uint8_t *src = picref->data[plane];
int linesize = picref->linesize[plane];
if (!geq->pixel_sums[plane])
geq->pixel_sums[plane] = av_malloc_array(w, h * sizeof (*geq->pixel_sums[plane]));
if (!geq->pixel_sums[plane])
return AVERROR(ENOMEM);
if (geq->bps == 32)
linesize /= 4;
else if (geq->bps > 8 && geq->bps <= 16)
linesize /= 2;
for (yi = 0; yi < h; yi ++) {
if (geq->bps > 8 && geq->bps <= 16) {
const uint16_t *src16 = (const uint16_t*)src;
double linesum = 0;
for (xi = 0; xi < w; xi ++) {
linesum += src16[xi + yi * linesize];
geq->pixel_sums[plane][xi + yi * w] = linesum;
}
} else if (geq->bps == 8) {
double linesum = 0;
for (xi = 0; xi < w; xi ++) {
linesum += src[xi + yi * linesize];
geq->pixel_sums[plane][xi + yi * w] = linesum;
}
} else if (geq->bps == 32) {
const float *src32 = (const float*)src;
double linesum = 0;
for (xi = 0; xi < w; xi ++) {
linesum += src32[xi + yi * linesize];
geq->pixel_sums[plane][xi + yi * w] = linesum;
}
}
if (yi)
for (xi = 0; xi < w; xi ++) {
geq->pixel_sums[plane][xi + yi * w] += geq->pixel_sums[plane][xi + yi * w - w];
}
}
return 0;
}
static inline double getpix_integrate_internal(GEQContext *geq, int x, int y, int plane, int w, int h)
{
if (x > w - 1) {
double boundary = getpix_integrate_internal(geq, w - 1, y, plane, w, h);
return 2*boundary - getpix_integrate_internal(geq, 2*(w - 1) - x, y, plane, w, h);
} else if (y > h - 1) {
double boundary = getpix_integrate_internal(geq, x, h - 1, plane, w, h);
return 2*boundary - getpix_integrate_internal(geq, x, 2*(h - 1) - y, plane, w, h);
} else if (x < 0) {
if (x == -1) return 0;
return - getpix_integrate_internal(geq, -x-2, y, plane, w, h);
} else if (y < 0) {
if (y == -1) return 0;
return - getpix_integrate_internal(geq, x, -y-2, plane, w, h);
}
return geq->pixel_sums[plane][x + y * w];
}
static inline double getpix_integrate(void *priv, double x, double y, int plane) {
GEQContext *geq = priv;
AVFrame *picref = geq->picref;
const uint8_t *src = picref->data[plane];
const int w = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(picref->width, geq->hsub) : picref->width;
const int h = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(picref->height, geq->vsub) : picref->height;
if (!src)
return 0;
return getpix_integrate_internal(geq, lrint(av_clipd(x, -w, 2*w)), lrint(av_clipd(y, -h, 2*h)), plane, w, h);
}
//TODO: cubic interpolate
//TODO: keep the last few frames
static double lum(void *priv, double x, double y) { return getpix(priv, x, y, 0); }
static double cb(void *priv, double x, double y) { return getpix(priv, x, y, 1); }
static double cr(void *priv, double x, double y) { return getpix(priv, x, y, 2); }
static double alpha(void *priv, double x, double y) { return getpix(priv, x, y, 3); }
static double lumsum(void *priv, double x, double y) { return getpix_integrate(priv, x, y, 0); }
static double cbsum(void *priv, double x, double y) { return getpix_integrate(priv, x, y, 1); }
static double crsub(void *priv, double x, double y) { return getpix_integrate(priv, x, y, 2); }
static double alphasum(void *priv, double x, double y) { return getpix_integrate(priv, x, y, 3); }
static av_cold int geq_init(AVFilterContext *ctx)
{
GEQContext *geq = ctx->priv;
int plane, ret = 0;
if (!geq->expr_str[Y] && !geq->expr_str[G] && !geq->expr_str[B] && !geq->expr_str[R]) {
av_log(ctx, AV_LOG_ERROR, "A luminance or RGB expression is mandatory\n");
ret = AVERROR(EINVAL);
goto end;
}
geq->is_rgb = !geq->expr_str[Y];
if ((geq->expr_str[Y] || geq->expr_str[U] || geq->expr_str[V]) && (geq->expr_str[G] || geq->expr_str[B] || geq->expr_str[R])) {
av_log(ctx, AV_LOG_ERROR, "Either YCbCr or RGB but not both must be specified\n");
ret = AVERROR(EINVAL);
goto end;
}
if (!geq->expr_str[U] && !geq->expr_str[V]) {
/* No chroma at all: fallback on luma */
geq->expr_str[U] = av_strdup(geq->expr_str[Y]);
geq->expr_str[V] = av_strdup(geq->expr_str[Y]);
} else {
/* One chroma unspecified, fallback on the other */
if (!geq->expr_str[U]) geq->expr_str[U] = av_strdup(geq->expr_str[V]);
if (!geq->expr_str[V]) geq->expr_str[V] = av_strdup(geq->expr_str[U]);
}
if (!geq->expr_str[A] && geq->bps != 32) {
geq->expr_str[A] = av_asprintf("%d", (1<<geq->bps) - 1);
} else if (!geq->expr_str[A]) {
geq->expr_str[A] = av_asprintf("%f", 1.f);
}
if (!geq->expr_str[G])
geq->expr_str[G] = av_strdup("g(X,Y)");
if (!geq->expr_str[B])
geq->expr_str[B] = av_strdup("b(X,Y)");
if (!geq->expr_str[R])
geq->expr_str[R] = av_strdup("r(X,Y)");
if (geq->is_rgb ?
(!geq->expr_str[G] || !geq->expr_str[B] || !geq->expr_str[R])
:
(!geq->expr_str[U] || !geq->expr_str[V] || !geq->expr_str[A])) {
ret = AVERROR(ENOMEM);
goto end;
}
for (plane = 0; plane < NB_PLANES; plane++) {
static double (*const p[])(void *, double, double) = {
lum , cb , cr , alpha ,
lumsum, cbsum, crsub, alphasum,
};
static const char *const func2_yuv_names[] = {
"lum" , "cb" , "cr" , "alpha" , "p",
"lumsum", "cbsum", "crsum", "alphasum", "psum",
NULL };
static const char *const func2_rgb_names[] = {
"g" , "b" , "r" , "alpha" , "p",
"gsum", "bsum", "rsum", "alphasum", "psum",
NULL };
const char *const *func2_names = geq->is_rgb ? func2_rgb_names : func2_yuv_names;
double (*const func2[])(void *, double, double) = {
lum , cb , cr , alpha , p[plane],
lumsum, cbsum, crsub, alphasum, p[plane + 4],
NULL };
int counter[10] = {0};
for (int i = 0; i < MAX_NB_THREADS; i++) {
ret = av_expr_parse(&geq->e[plane][i], geq->expr_str[plane < 3 && geq->is_rgb ? plane+4 : plane], var_names,
NULL, NULL, func2_names, func2, 0, ctx);
if (ret < 0)
goto end;
}
av_expr_count_func(geq->e[plane][0], counter, FF_ARRAY_ELEMS(counter), 2);
geq->needs_sum[plane] = counter[5] + counter[6] + counter[7] + counter[8] + counter[9];
}
end:
return ret;
}
static int geq_query_formats(AVFilterContext *ctx)
{
GEQContext *geq = ctx->priv;
static const enum AVPixelFormat yuv_pix_fmts[] = {
AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P,
AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P,
AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA420P,
AV_PIX_FMT_GRAY8,
AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV420P9,
AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA420P9,
AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10,
AV_PIX_FMT_YUV440P10,
AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10,
AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10,
AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12,
AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14,
AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14,
AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV420P16,
AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P16,
AV_PIX_FMT_GRAY16,
AV_PIX_FMT_GRAYF32,
AV_PIX_FMT_NONE
};
static const enum AVPixelFormat rgb_pix_fmts[] = {
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP,
AV_PIX_FMT_GBRP9,
AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12,
AV_PIX_FMT_GBRP14,
AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_GBRPF32, AV_PIX_FMT_GBRAPF32,
AV_PIX_FMT_NONE
};
const enum AVPixelFormat *pix_fmts = geq->is_rgb ? rgb_pix_fmts : yuv_pix_fmts;
return ff_set_common_formats_from_list(ctx, pix_fmts);
}
static int geq_config_props(AVFilterLink *inlink)
{
GEQContext *geq = inlink->dst->priv;
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
av_assert0(desc);
geq->hsub = desc->log2_chroma_w;
geq->vsub = desc->log2_chroma_h;
geq->bps = desc->comp[0].depth;
geq->planes = desc->nb_components;
return 0;
}
typedef struct ThreadData {
int height;
int width;
int plane;
int linesize;
} ThreadData;
static int slice_geq_filter(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
{
GEQContext *geq = ctx->priv;
ThreadData *td = arg;
const int height = td->height;
const int width = td->width;
const int plane = td->plane;
const int linesize = td->linesize;
const int slice_start = (height * jobnr) / nb_jobs;
const int slice_end = (height * (jobnr+1)) / nb_jobs;
int x, y;
double values[VAR_VARS_NB];
values[VAR_W] = geq->values[VAR_W];
values[VAR_H] = geq->values[VAR_H];
values[VAR_N] = geq->values[VAR_N];
values[VAR_SW] = geq->values[VAR_SW];
values[VAR_SH] = geq->values[VAR_SH];
values[VAR_T] = geq->values[VAR_T];
if (geq->bps == 8) {
uint8_t *ptr = geq->dst + linesize * slice_start;
for (y = slice_start; y < slice_end; y++) {
values[VAR_Y] = y;
for (x = 0; x < width; x++) {
values[VAR_X] = x;
ptr[x] = av_expr_eval(geq->e[plane][jobnr], values, geq);
}
ptr += linesize;
}
} else if (geq->bps <= 16) {
uint16_t *ptr16 = geq->dst16 + (linesize/2) * slice_start;
for (y = slice_start; y < slice_end; y++) {
values[VAR_Y] = y;
for (x = 0; x < width; x++) {
values[VAR_X] = x;
ptr16[x] = av_expr_eval(geq->e[plane][jobnr], values, geq);
}
ptr16 += linesize/2;
}
} else {
float *ptr32 = geq->dst32 + (linesize/4) * slice_start;
for (y = slice_start; y < slice_end; y++) {
values[VAR_Y] = y;
for (x = 0; x < width; x++) {
values[VAR_X] = x;
ptr32[x] = av_expr_eval(geq->e[plane][jobnr], values, geq);
}
ptr32 += linesize/4;
}
}
return 0;
}
static int geq_filter_frame(AVFilterLink *inlink, AVFrame *in)
{
int plane;
AVFilterContext *ctx = inlink->dst;
const int nb_threads = FFMIN(MAX_NB_THREADS, ff_filter_get_nb_threads(ctx));
GEQContext *geq = ctx->priv;
AVFilterLink *outlink = inlink->dst->outputs[0];
AVFrame *out;
geq->values[VAR_N] = inlink->frame_count_out,
geq->values[VAR_T] = in->pts == AV_NOPTS_VALUE ? NAN : in->pts * av_q2d(inlink->time_base),
geq->picref = in;
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
for (plane = 0; plane < geq->planes && out->data[plane]; plane++) {
const int width = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(inlink->w, geq->hsub) : inlink->w;
const int height = (plane == 1 || plane == 2) ? AV_CEIL_RSHIFT(inlink->h, geq->vsub) : inlink->h;
const int linesize = out->linesize[plane];
ThreadData td;
geq->dst = out->data[plane];
geq->dst16 = (uint16_t*)out->data[plane];
geq->dst32 = (float*)out->data[plane];
geq->values[VAR_W] = width;
geq->values[VAR_H] = height;
geq->values[VAR_SW] = width / (double)inlink->w;
geq->values[VAR_SH] = height / (double)inlink->h;
td.width = width;
td.height = height;
td.plane = plane;
td.linesize = linesize;
if (geq->needs_sum[plane])
calculate_sums(geq, plane, width, height);
ff_filter_execute(ctx, slice_geq_filter, &td,
NULL, FFMIN(height, nb_threads));
}
av_frame_free(&geq->picref);
return ff_filter_frame(outlink, out);
}
static av_cold void geq_uninit(AVFilterContext *ctx)
{
int i;
GEQContext *geq = ctx->priv;
for (i = 0; i < NB_PLANES; i++)
for (int j = 0; j < MAX_NB_THREADS; j++)
av_expr_free(geq->e[i][j]);
for (i = 0; i < NB_PLANES; i++)
av_freep(&geq->pixel_sums);
}
static const AVFilterPad geq_inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.config_props = geq_config_props,
.filter_frame = geq_filter_frame,
},
};
const AVFilter ff_vf_geq = {
.name = "geq",
.description = NULL_IF_CONFIG_SMALL("Apply generic equation to each pixel."),
.priv_size = sizeof(GEQContext),
.init = geq_init,
.uninit = geq_uninit,
FILTER_INPUTS(geq_inputs),
FILTER_OUTPUTS(ff_video_default_filterpad),
FILTER_QUERY_FUNC(geq_query_formats),
.priv_class = &geq_class,
.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS,
};