FFmpeg/libavcodec/aaccoder.c
Rostislav Pehlivanov da64bd6a99 aaccoder: tweak PNS implementation further
This commit changes a few things about the noise substitution
logic:
 - Brings back the quantization factor (reduced to 3) during
   scalefactor index calculations.
 - Rejects any zeroed bands. They should be inaudiable and it's
   a waste transmitting the scalefactor indices for these.
 - Uses swb_offsets instead of incrementing a 'start' with every
   window group size.
 - Rejects all PNS during short windows.
Overall improves quality. There was a plan to use the lfg system
to create the random numbers instead of using whatever the decoder
uses but for now this works fine. Entropy is far from important here.

Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
2015-09-09 10:44:33 +01:00

1077 lines
43 KiB
C

/*
* AAC coefficients encoder
* Copyright (C) 2008-2009 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC coefficients encoder
*/
/***********************************
* TODOs:
* speedup quantizer selection
* add sane pulse detection
***********************************/
#include "libavutil/libm.h" // brought forward to work around cygwin header breakage
#include <float.h>
#include "libavutil/mathematics.h"
#include "avcodec.h"
#include "put_bits.h"
#include "aac.h"
#include "aacenc.h"
#include "aactab.h"
#include "aacenctab.h"
#include "aacenc_utils.h"
#include "aacenc_quantization.h"
#include "aac_tablegen_decl.h"
#include "aacenc_is.h"
#include "aacenc_tns.h"
#include "aacenc_pred.h"
/** Frequency in Hz for lower limit of noise substitution **/
#define NOISE_LOW_LIMIT 4000
/** Pointless to substitute very high short lived inaudiable frequencies **/
#define NOISE_HIGH_LIMIT 18120
/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
* beyond which no PNS is used (since the SFBs contain tone rather than noise) */
#define NOISE_SPREAD_THRESHOLD 0.5073f
/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
* replace low energy non zero bands */
#define NOISE_LAMBDA_REPLACE 1.948f
/**
* structure used in optimal codebook search
*/
typedef struct BandCodingPath {
int prev_idx; ///< pointer to the previous path point
float cost; ///< path cost
int run;
} BandCodingPath;
/**
* Encode band info for single window group bands.
*/
static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
int win, int group_len, const float lambda)
{
BandCodingPath path[120][CB_TOT_ALL];
int w, swb, cb, start, size;
int i, j;
const int max_sfb = sce->ics.max_sfb;
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
const int run_esc = (1 << run_bits) - 1;
int idx, ppos, count;
int stackrun[120], stackcb[120], stack_len;
float next_minrd = INFINITY;
int next_mincb = 0;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
start = win*128;
for (cb = 0; cb < CB_TOT_ALL; cb++) {
path[0][cb].cost = 0.0f;
path[0][cb].prev_idx = -1;
path[0][cb].run = 0;
}
for (swb = 0; swb < max_sfb; swb++) {
size = sce->ics.swb_sizes[swb];
if (sce->zeroes[win*16 + swb]) {
for (cb = 0; cb < CB_TOT_ALL; cb++) {
path[swb+1][cb].prev_idx = cb;
path[swb+1][cb].cost = path[swb][cb].cost;
path[swb+1][cb].run = path[swb][cb].run + 1;
}
} else {
float minrd = next_minrd;
int mincb = next_mincb;
next_minrd = INFINITY;
next_mincb = 0;
for (cb = 0; cb < CB_TOT_ALL; cb++) {
float cost_stay_here, cost_get_here;
float rd = 0.0f;
if (cb >= 12 && sce->band_type[win*16+swb] < aac_cb_out_map[cb] ||
cb < aac_cb_in_map[sce->band_type[win*16+swb]] && sce->band_type[win*16+swb] > aac_cb_out_map[cb]) {
path[swb+1][cb].prev_idx = -1;
path[swb+1][cb].cost = INFINITY;
path[swb+1][cb].run = path[swb][cb].run + 1;
continue;
}
for (w = 0; w < group_len; w++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb];
rd += quantize_band_cost(s, &sce->coeffs[start + w*128],
&s->scoefs[start + w*128], size,
sce->sf_idx[(win+w)*16+swb], aac_cb_out_map[cb],
lambda / band->threshold, INFINITY, NULL, 0);
}
cost_stay_here = path[swb][cb].cost + rd;
cost_get_here = minrd + rd + run_bits + 4;
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
cost_stay_here += run_bits;
if (cost_get_here < cost_stay_here) {
path[swb+1][cb].prev_idx = mincb;
path[swb+1][cb].cost = cost_get_here;
path[swb+1][cb].run = 1;
} else {
path[swb+1][cb].prev_idx = cb;
path[swb+1][cb].cost = cost_stay_here;
path[swb+1][cb].run = path[swb][cb].run + 1;
}
if (path[swb+1][cb].cost < next_minrd) {
next_minrd = path[swb+1][cb].cost;
next_mincb = cb;
}
}
}
start += sce->ics.swb_sizes[swb];
}
//convert resulting path from backward-linked list
stack_len = 0;
idx = 0;
for (cb = 1; cb < CB_TOT_ALL; cb++)
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
idx = cb;
ppos = max_sfb;
while (ppos > 0) {
av_assert1(idx >= 0);
cb = idx;
stackrun[stack_len] = path[ppos][cb].run;
stackcb [stack_len] = cb;
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
ppos -= path[ppos][cb].run;
stack_len++;
}
//perform actual band info encoding
start = 0;
for (i = stack_len - 1; i >= 0; i--) {
cb = aac_cb_out_map[stackcb[i]];
put_bits(&s->pb, 4, cb);
count = stackrun[i];
memset(sce->zeroes + win*16 + start, !cb, count);
//XXX: memset when band_type is also uint8_t
for (j = 0; j < count; j++) {
sce->band_type[win*16 + start] = cb;
start++;
}
while (count >= run_esc) {
put_bits(&s->pb, run_bits, run_esc);
count -= run_esc;
}
put_bits(&s->pb, run_bits, count);
}
}
static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
int win, int group_len, const float lambda)
{
BandCodingPath path[120][CB_TOT_ALL];
int w, swb, cb, start, size;
int i, j;
const int max_sfb = sce->ics.max_sfb;
const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
const int run_esc = (1 << run_bits) - 1;
int idx, ppos, count;
int stackrun[120], stackcb[120], stack_len;
float next_minbits = INFINITY;
int next_mincb = 0;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
start = win*128;
for (cb = 0; cb < CB_TOT_ALL; cb++) {
path[0][cb].cost = run_bits+4;
path[0][cb].prev_idx = -1;
path[0][cb].run = 0;
}
for (swb = 0; swb < max_sfb; swb++) {
size = sce->ics.swb_sizes[swb];
if (sce->zeroes[win*16 + swb]) {
float cost_stay_here = path[swb][0].cost;
float cost_get_here = next_minbits + run_bits + 4;
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run]
!= run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1])
cost_stay_here += run_bits;
if (cost_get_here < cost_stay_here) {
path[swb+1][0].prev_idx = next_mincb;
path[swb+1][0].cost = cost_get_here;
path[swb+1][0].run = 1;
} else {
path[swb+1][0].prev_idx = 0;
path[swb+1][0].cost = cost_stay_here;
path[swb+1][0].run = path[swb][0].run + 1;
}
next_minbits = path[swb+1][0].cost;
next_mincb = 0;
for (cb = 1; cb < CB_TOT_ALL; cb++) {
path[swb+1][cb].cost = 61450;
path[swb+1][cb].prev_idx = -1;
path[swb+1][cb].run = 0;
}
} else {
float minbits = next_minbits;
int mincb = next_mincb;
int startcb = sce->band_type[win*16+swb];
startcb = aac_cb_in_map[startcb];
next_minbits = INFINITY;
next_mincb = 0;
for (cb = 0; cb < startcb; cb++) {
path[swb+1][cb].cost = 61450;
path[swb+1][cb].prev_idx = -1;
path[swb+1][cb].run = 0;
}
for (cb = startcb; cb < CB_TOT_ALL; cb++) {
float cost_stay_here, cost_get_here;
float bits = 0.0f;
if (cb >= 12 && sce->band_type[win*16+swb] != aac_cb_out_map[cb]) {
path[swb+1][cb].cost = 61450;
path[swb+1][cb].prev_idx = -1;
path[swb+1][cb].run = 0;
continue;
}
for (w = 0; w < group_len; w++) {
bits += quantize_band_cost(s, &sce->coeffs[start + w*128],
&s->scoefs[start + w*128], size,
sce->sf_idx[win*16+swb],
aac_cb_out_map[cb],
0, INFINITY, NULL, 0);
}
cost_stay_here = path[swb][cb].cost + bits;
cost_get_here = minbits + bits + run_bits + 4;
if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
!= run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
cost_stay_here += run_bits;
if (cost_get_here < cost_stay_here) {
path[swb+1][cb].prev_idx = mincb;
path[swb+1][cb].cost = cost_get_here;
path[swb+1][cb].run = 1;
} else {
path[swb+1][cb].prev_idx = cb;
path[swb+1][cb].cost = cost_stay_here;
path[swb+1][cb].run = path[swb][cb].run + 1;
}
if (path[swb+1][cb].cost < next_minbits) {
next_minbits = path[swb+1][cb].cost;
next_mincb = cb;
}
}
}
start += sce->ics.swb_sizes[swb];
}
//convert resulting path from backward-linked list
stack_len = 0;
idx = 0;
for (cb = 1; cb < CB_TOT_ALL; cb++)
if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
idx = cb;
ppos = max_sfb;
while (ppos > 0) {
av_assert1(idx >= 0);
cb = idx;
stackrun[stack_len] = path[ppos][cb].run;
stackcb [stack_len] = cb;
idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
ppos -= path[ppos][cb].run;
stack_len++;
}
//perform actual band info encoding
start = 0;
for (i = stack_len - 1; i >= 0; i--) {
cb = aac_cb_out_map[stackcb[i]];
put_bits(&s->pb, 4, cb);
count = stackrun[i];
memset(sce->zeroes + win*16 + start, !cb, count);
//XXX: memset when band_type is also uint8_t
for (j = 0; j < count; j++) {
sce->band_type[win*16 + start] = cb;
start++;
}
while (count >= run_esc) {
put_bits(&s->pb, run_bits, run_esc);
count -= run_esc;
}
put_bits(&s->pb, run_bits, count);
}
}
typedef struct TrellisPath {
float cost;
int prev;
} TrellisPath;
#define TRELLIS_STAGES 121
#define TRELLIS_STATES (SCALE_MAX_DIFF+1)
static void set_special_band_scalefactors(AACEncContext *s, SingleChannelElement *sce)
{
int w, g, start = 0;
int minscaler_n = sce->sf_idx[0], minscaler_i = sce->sf_idx[0];
int bands = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce->ics.num_swb; g++) {
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
sce->sf_idx[w*16+g] = av_clip(roundf(log2f(sce->is_ener[w*16+g])*2), -155, 100);
minscaler_i = FFMIN(minscaler_i, sce->sf_idx[w*16+g]);
bands++;
} else if (sce->band_type[w*16+g] == NOISE_BT) {
sce->sf_idx[w*16+g] = av_clip(3+ceilf(log2f(sce->pns_ener[w*16+g])*2), -100, 155);
minscaler_n = FFMIN(minscaler_n, sce->sf_idx[w*16+g]);
bands++;
}
start += sce->ics.swb_sizes[g];
}
}
if (!bands)
return;
/* Clip the scalefactor indices */
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (sce->band_type[w*16+g] == INTENSITY_BT || sce->band_type[w*16+g] == INTENSITY_BT2) {
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_i, minscaler_i + SCALE_MAX_DIFF);
} else if (sce->band_type[w*16+g] == NOISE_BT) {
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler_n, minscaler_n + SCALE_MAX_DIFF);
}
}
}
}
static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int q, w, w2, g, start = 0;
int i, j;
int idx;
TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
int bandaddr[TRELLIS_STAGES];
int minq;
float mincost;
float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
int q0, q1, qcnt = 0;
for (i = 0; i < 1024; i++) {
float t = fabsf(sce->coeffs[i]);
if (t > 0.0f) {
q0f = FFMIN(q0f, t);
q1f = FFMAX(q1f, t);
qnrgf += t*t;
qcnt++;
}
}
if (!qcnt) {
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
memset(sce->zeroes, 1, sizeof(sce->zeroes));
return;
}
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
q0 = coef2minsf(q0f);
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
q1 = coef2maxsf(q1f);
if (q1 - q0 > 60) {
int q0low = q0;
int q1high = q1;
//minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
q1 = qnrg + 30;
q0 = qnrg - 30;
if (q0 < q0low) {
q1 += q0low - q0;
q0 = q0low;
} else if (q1 > q1high) {
q0 -= q1 - q1high;
q1 = q1high;
}
}
for (i = 0; i < TRELLIS_STATES; i++) {
paths[0][i].cost = 0.0f;
paths[0][i].prev = -1;
}
for (j = 1; j < TRELLIS_STAGES; j++) {
for (i = 0; i < TRELLIS_STATES; i++) {
paths[j][i].cost = INFINITY;
paths[j][i].prev = -2;
}
}
idx = 1;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = &sce->coeffs[start];
float qmin, qmax;
int nz = 0;
bandaddr[idx] = w * 16 + g;
qmin = INT_MAX;
qmax = 0.0f;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1;
continue;
}
sce->zeroes[(w+w2)*16+g] = 0;
nz = 1;
for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
float t = fabsf(coefs[w2*128+i]);
if (t > 0.0f)
qmin = FFMIN(qmin, t);
qmax = FFMAX(qmax, t);
}
}
if (nz) {
int minscale, maxscale;
float minrd = INFINITY;
float maxval;
//minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
minscale = coef2minsf(qmin);
//maximum scalefactor index is when maximum coefficient after quantizing is still not zero
maxscale = coef2maxsf(qmax);
minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
for (q = minscale; q < maxscale; q++) {
float dist = 0;
int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
q + q0, cb, lambda / band->threshold, INFINITY, NULL, 0);
}
minrd = FFMIN(minrd, dist);
for (i = 0; i < q1 - q0; i++) {
float cost;
cost = paths[idx - 1][i].cost + dist
+ ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
if (cost < paths[idx][q].cost) {
paths[idx][q].cost = cost;
paths[idx][q].prev = i;
}
}
}
} else {
for (q = 0; q < q1 - q0; q++) {
paths[idx][q].cost = paths[idx - 1][q].cost + 1;
paths[idx][q].prev = q;
}
}
sce->zeroes[w*16+g] = !nz;
start += sce->ics.swb_sizes[g];
idx++;
}
}
idx--;
mincost = paths[idx][0].cost;
minq = 0;
for (i = 1; i < TRELLIS_STATES; i++) {
if (paths[idx][i].cost < mincost) {
mincost = paths[idx][i].cost;
minq = i;
}
}
while (idx) {
sce->sf_idx[bandaddr[idx]] = minq + q0;
minq = paths[idx][minq].prev;
idx--;
}
//set the same quantizers inside window groups
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
for (g = 0; g < sce->ics.num_swb; g++)
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
}
/**
* two-loop quantizers search taken from ISO 13818-7 Appendix C
*/
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
float dists[128] = { 0 }, uplims[128] = { 0 };
float maxvals[128];
int fflag, minscaler;
int its = 0;
int allz = 0;
float minthr = INFINITY;
// for values above this the decoder might end up in an endless loop
// due to always having more bits than what can be encoded.
destbits = FFMIN(destbits, 5800);
//XXX: some heuristic to determine initial quantizers will reduce search time
//determine zero bands and upper limits
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
int nz = 0;
float uplim = 0.0f, energy = 0.0f;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
uplim += band->threshold;
energy += band->energy;
if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1;
continue;
}
nz = 1;
}
uplims[w*16+g] = uplim *512;
sce->zeroes[w*16+g] = !nz;
if (nz)
minthr = FFMIN(minthr, uplim);
allz |= nz;
}
}
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (sce->zeroes[w*16+g]) {
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
continue;
}
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
}
}
if (!allz)
return;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *scaled = s->scoefs + start;
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
start += sce->ics.swb_sizes[g];
}
}
//perform two-loop search
//outer loop - improve quality
do {
int tbits, qstep;
minscaler = sce->sf_idx[0];
//inner loop - quantize spectrum to fit into given number of bits
qstep = its ? 1 : 32;
do {
int prev = -1;
tbits = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = &sce->coeffs[start];
const float *scaled = &s->scoefs[start];
int bits = 0;
int cb;
float dist = 0.0f;
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
start += sce->ics.swb_sizes[g];
continue;
}
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
sce->sf_idx[w*16+g],
cb,
1.0f,
INFINITY,
&b,
0);
bits += b;
}
dists[w*16+g] = dist - bits;
if (prev != -1) {
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
}
tbits += bits;
start += sce->ics.swb_sizes[g];
prev = sce->sf_idx[w*16+g];
}
}
if (tbits > destbits) {
for (i = 0; i < 128; i++)
if (sce->sf_idx[i] < 218 - qstep)
sce->sf_idx[i] += qstep;
} else {
for (i = 0; i < 128; i++)
if (sce->sf_idx[i] > 60 - qstep)
sce->sf_idx[i] -= qstep;
}
qstep >>= 1;
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
qstep = 1;
} while (qstep);
fflag = 0;
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
int prevsc = sce->sf_idx[w*16+g];
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
sce->sf_idx[w*16+g]--;
else //Try to make sure there is some energy in every band
sce->sf_idx[w*16+g]-=2;
}
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
if (sce->sf_idx[w*16+g] != prevsc)
fflag = 1;
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
}
}
its++;
} while (fflag && its < 10);
}
static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
float uplim[128], maxq[128];
int minq, maxsf;
float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
int last = 0, lastband = 0, curband = 0;
float avg_energy = 0.0;
if (sce->ics.num_windows == 1) {
start = 0;
for (i = 0; i < 1024; i++) {
if (i - start >= sce->ics.swb_sizes[curband]) {
start += sce->ics.swb_sizes[curband];
curband++;
}
if (sce->coeffs[i]) {
avg_energy += sce->coeffs[i] * sce->coeffs[i];
last = i;
lastband = curband;
}
}
} else {
for (w = 0; w < 8; w++) {
const float *coeffs = &sce->coeffs[w*128];
curband = start = 0;
for (i = 0; i < 128; i++) {
if (i - start >= sce->ics.swb_sizes[curband]) {
start += sce->ics.swb_sizes[curband];
curband++;
}
if (coeffs[i]) {
avg_energy += coeffs[i] * coeffs[i];
last = FFMAX(last, i);
lastband = FFMAX(lastband, curband);
}
}
}
}
last++;
avg_energy /= last;
if (avg_energy == 0.0f) {
for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
sce->sf_idx[i] = SCALE_ONE_POS;
return;
}
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
float *coefs = &sce->coeffs[start];
const int size = sce->ics.swb_sizes[g];
int start2 = start, end2 = start + size, peakpos = start;
float maxval = -1, thr = 0.0f, t;
maxq[w*16+g] = 0.0f;
if (g > lastband) {
maxq[w*16+g] = 0.0f;
start += size;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
continue;
}
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
for (i = 0; i < size; i++) {
float t = coefs[w2*128+i]*coefs[w2*128+i];
maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
thr += t;
if (sce->ics.num_windows == 1 && maxval < t) {
maxval = t;
peakpos = start+i;
}
}
}
if (sce->ics.num_windows == 1) {
start2 = FFMAX(peakpos - 2, start2);
end2 = FFMIN(peakpos + 3, end2);
} else {
start2 -= start;
end2 -= start;
}
start += size;
thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
t = 1.0 - (1.0 * start2 / last);
uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
}
}
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = &sce->coeffs[start];
const float *scaled = &s->scoefs[start];
const int size = sce->ics.swb_sizes[g];
int scf, prev_scf, step;
int min_scf = -1, max_scf = 256;
float curdiff;
if (maxq[w*16+g] < 21.544) {
sce->zeroes[w*16+g] = 1;
start += size;
continue;
}
sce->zeroes[w*16+g] = 0;
scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
for (;;) {
float dist = 0.0f;
int quant_max;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
scf,
ESC_BT,
lambda,
INFINITY,
&b,
0);
dist -= b;
}
dist *= 1.0f / 512.0f / lambda;
quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512], ROUND_STANDARD);
if (quant_max >= 8191) { // too much, return to the previous quantizer
sce->sf_idx[w*16+g] = prev_scf;
break;
}
prev_scf = scf;
curdiff = fabsf(dist - uplim[w*16+g]);
if (curdiff <= 1.0f)
step = 0;
else
step = log2f(curdiff);
if (dist > uplim[w*16+g])
step = -step;
scf += step;
scf = av_clip_uint8(scf);
step = scf - prev_scf;
if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
break;
}
if (step > 0)
min_scf = prev_scf;
else
max_scf = prev_scf;
}
start += size;
}
}
minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
for (i = 1; i < 128; i++) {
if (!sce->sf_idx[i])
sce->sf_idx[i] = sce->sf_idx[i-1];
else
minq = FFMIN(minq, sce->sf_idx[i]);
}
if (minq == INT_MAX)
minq = 0;
minq = FFMIN(minq, SCALE_MAX_POS);
maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
for (i = 126; i >= 0; i--) {
if (!sce->sf_idx[i])
sce->sf_idx[i] = sce->sf_idx[i+1];
sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
}
}
static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int i, w, w2, g;
int minq = 255;
memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
if (band->energy <= band->threshold) {
sce->sf_idx[(w+w2)*16+g] = 218;
sce->zeroes[(w+w2)*16+g] = 1;
} else {
sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
sce->zeroes[(w+w2)*16+g] = 0;
}
minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
}
}
}
for (i = 0; i < 128; i++) {
sce->sf_idx[i] = 140;
//av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
}
//set the same quantizers inside window groups
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
for (g = 0; g < sce->ics.num_swb; g++)
for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
}
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
{
FFPsyBand *band;
int w, g, w2, i;
float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
float *NOR34 = &s->scoefs[3*128];
const float lambda = s->lambda;
const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/100.f);
if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE)
return;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
int noise_sfi;
float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
float pns_energy = 0.0f, energy_ratio, dist_thresh;
float sfb_energy = 0.0f, threshold = 0.0f, spread = 0.0f;
const int start = sce->ics.swb_offset[w*16+g];
const float freq = start*freq_mult;
const float freq_boost = FFMAX(0.88f*freq/NOISE_LOW_LIMIT, 1.0f);
if (freq < NOISE_LOW_LIMIT)
continue;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
sfb_energy += band->energy;
spread += band->spread;
threshold += band->threshold;
}
/* Ramps down at ~8000Hz and loosens the dist threshold */
dist_thresh = FFMIN(2.5f*NOISE_LOW_LIMIT/freq, 1.27f);
if (sce->zeroes[w*16+g] || spread < spread_threshold ||
sfb_energy > threshold*thr_mult*freq_boost || !sfb_energy) {
sce->pns_ener[w*16+g] = sfb_energy;
continue;
}
noise_sfi = av_clip(roundf(log2f(sfb_energy)*2), -100, 155); /* Quantize */
noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
float band_energy, scale;
const int start_c = sce->ics.swb_offset[(w+w2)*16+g];
band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
for (i = 0; i < sce->ics.swb_sizes[g]; i++)
PNS[i] = s->random_state = lcg_random(s->random_state);
band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
scale = noise_amp/sqrtf(band_energy);
s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
pns_energy += s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
abs_pow34_v(NOR34, &sce->coeffs[start_c], sce->ics.swb_sizes[g]);
abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
dist1 += quantize_band_cost(s, &sce->coeffs[start_c],
NOR34,
sce->ics.swb_sizes[g],
sce->sf_idx[(w+w2)*16+g],
sce->band_alt[(w+w2)*16+g],
lambda/band->threshold, INFINITY, NULL, 0);
dist2 += quantize_band_cost(s, PNS,
PNS34,
sce->ics.swb_sizes[g],
noise_sfi,
NOISE_BT,
lambda/band->threshold, INFINITY, NULL, 0);
}
energy_ratio = sfb_energy/pns_energy; /* Compensates for quantization error */
sce->pns_ener[w*16+g] = energy_ratio*sfb_energy;
if (energy_ratio > 0.85f && energy_ratio < 1.25f && dist1/dist2 > dist_thresh) {
sce->band_type[w*16+g] = NOISE_BT;
sce->zeroes[w*16+g] = 0;
if (sce->band_type[w*16+g-1] != NOISE_BT && /* Prevent holes */
sce->band_type[w*16+g-2] == NOISE_BT) {
sce->band_type[w*16+g-1] = NOISE_BT;
sce->zeroes[w*16+g-1] = 0;
}
}
}
}
}
static void search_for_ms(AACEncContext *s, ChannelElement *cpe)
{
int start = 0, i, w, w2, g;
float M[128], S[128];
float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
const float lambda = s->lambda;
SingleChannelElement *sce0 = &cpe->ch[0];
SingleChannelElement *sce1 = &cpe->ch[1];
if (!cpe->common_window)
return;
for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce0->ics.num_swb; g++) {
if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
float dist1 = 0.0f, dist2 = 0.0f;
for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g];
float minthr = FFMIN(band0->threshold, band1->threshold);
float maxthr = FFMAX(band0->threshold, band1->threshold);
for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
M[i] = (sce0->coeffs[start+(w+w2)*128+i]
+ sce1->coeffs[start+(w+w2)*128+i]) * 0.5;
S[i] = M[i]
- sce1->coeffs[start+(w+w2)*128+i];
}
abs_pow34_v(L34, sce0->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
abs_pow34_v(R34, sce1->coeffs+start+(w+w2)*128, sce0->ics.swb_sizes[g]);
abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
dist1 += quantize_band_cost(s, &sce0->coeffs[start + (w+w2)*128],
L34,
sce0->ics.swb_sizes[g],
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g],
lambda / band0->threshold, INFINITY, NULL, 0);
dist1 += quantize_band_cost(s, &sce1->coeffs[start + (w+w2)*128],
R34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[(w+w2)*16+g],
sce1->band_type[(w+w2)*16+g],
lambda / band1->threshold, INFINITY, NULL, 0);
dist2 += quantize_band_cost(s, M,
M34,
sce0->ics.swb_sizes[g],
sce0->sf_idx[(w+w2)*16+g],
sce0->band_type[(w+w2)*16+g],
lambda / maxthr, INFINITY, NULL, 0);
dist2 += quantize_band_cost(s, S,
S34,
sce1->ics.swb_sizes[g],
sce1->sf_idx[(w+w2)*16+g],
sce1->band_type[(w+w2)*16+g],
lambda / minthr, INFINITY, NULL, 0);
}
cpe->ms_mask[w*16+g] = dist2 < dist1;
}
start += sce0->ics.swb_sizes[g];
}
}
}
AACCoefficientsEncoder ff_aac_coders[AAC_CODER_NB] = {
[AAC_CODER_FAAC] = {
search_for_quantizers_faac,
encode_window_bands_info,
quantize_and_encode_band,
ff_aac_encode_tns_info,
ff_aac_encode_main_pred,
ff_aac_adjust_common_prediction,
ff_aac_apply_main_pred,
ff_aac_apply_tns,
set_special_band_scalefactors,
search_for_pns,
ff_aac_search_for_tns,
search_for_ms,
ff_aac_search_for_is,
ff_aac_search_for_pred,
},
[AAC_CODER_ANMR] = {
search_for_quantizers_anmr,
encode_window_bands_info,
quantize_and_encode_band,
ff_aac_encode_tns_info,
ff_aac_encode_main_pred,
ff_aac_adjust_common_prediction,
ff_aac_apply_main_pred,
ff_aac_apply_tns,
set_special_band_scalefactors,
search_for_pns,
ff_aac_search_for_tns,
search_for_ms,
ff_aac_search_for_is,
ff_aac_search_for_pred,
},
[AAC_CODER_TWOLOOP] = {
search_for_quantizers_twoloop,
codebook_trellis_rate,
quantize_and_encode_band,
ff_aac_encode_tns_info,
ff_aac_encode_main_pred,
ff_aac_adjust_common_prediction,
ff_aac_apply_main_pred,
ff_aac_apply_tns,
set_special_band_scalefactors,
search_for_pns,
ff_aac_search_for_tns,
search_for_ms,
ff_aac_search_for_is,
ff_aac_search_for_pred,
},
[AAC_CODER_FAST] = {
search_for_quantizers_fast,
encode_window_bands_info,
quantize_and_encode_band,
ff_aac_encode_tns_info,
ff_aac_encode_main_pred,
ff_aac_adjust_common_prediction,
ff_aac_apply_main_pred,
ff_aac_apply_tns,
set_special_band_scalefactors,
search_for_pns,
ff_aac_search_for_tns,
search_for_ms,
ff_aac_search_for_is,
ff_aac_search_for_pred,
},
};