FFmpeg/libavutil/tx.c
Andreas Rheinhardt 790f793844 avutil/common: Don't auto-include mem.h
There are lots of files that don't need it: The number of object
files that actually need it went down from 2011 to 884 here.

Keep it for external users in order to not cause breakages.

Also improve the other headers a bit while just at it.

Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2024-03-31 00:08:43 +01:00

940 lines
29 KiB
C

/*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "avassert.h"
#include "intmath.h"
#include "cpu.h"
#include "mem.h"
#include "qsort.h"
#include "bprint.h"
#include "tx_priv.h"
#define TYPE_IS(type, x) \
(((x) == AV_TX_FLOAT_ ## type) || \
((x) == AV_TX_DOUBLE_ ## type) || \
((x) == AV_TX_INT32_ ## type))
/* Calculates the modular multiplicative inverse */
static av_always_inline int mulinv(int n, int m)
{
n = n % m;
for (int x = 1; x < m; x++)
if (((n * x) % m) == 1)
return x;
av_assert0(0); /* Never reached */
return 0;
}
int ff_tx_gen_pfa_input_map(AVTXContext *s, FFTXCodeletOptions *opts,
int d1, int d2)
{
const int sl = d1*d2;
s->map = av_malloc(s->len*sizeof(*s->map));
if (!s->map)
return AVERROR(ENOMEM);
for (int k = 0; k < s->len; k += sl) {
if (s->inv || (opts && opts->map_dir == FF_TX_MAP_SCATTER)) {
for (int m = 0; m < d2; m++)
for (int n = 0; n < d1; n++)
s->map[k + ((m*d1 + n*d2) % (sl))] = m*d1 + n;
} else {
for (int m = 0; m < d2; m++)
for (int n = 0; n < d1; n++)
s->map[k + m*d1 + n] = (m*d1 + n*d2) % (sl);
}
if (s->inv)
for (int w = 1; w <= ((sl) >> 1); w++)
FFSWAP(int, s->map[k + w], s->map[k + sl - w]);
}
s->map_dir = opts ? opts->map_dir : FF_TX_MAP_GATHER;
return 0;
}
/* Guaranteed to work for any n, m where gcd(n, m) == 1 */
int ff_tx_gen_compound_mapping(AVTXContext *s, FFTXCodeletOptions *opts,
int inv, int n, int m)
{
int *in_map, *out_map;
const int len = n*m; /* Will not be equal to s->len for MDCTs */
int m_inv, n_inv;
/* Make sure the numbers are coprime */
if (av_gcd(n, m) != 1)
return AVERROR(EINVAL);
m_inv = mulinv(m, n);
n_inv = mulinv(n, m);
if (!(s->map = av_malloc(2*len*sizeof(*s->map))))
return AVERROR(ENOMEM);
in_map = s->map;
out_map = s->map + len;
/* Ruritanian map for input, CRT map for output, can be swapped */
if (opts && opts->map_dir == FF_TX_MAP_SCATTER) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
in_map[(i*m + j*n) % len] = j*n + i;
out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
}
}
} else {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
in_map[j*n + i] = (i*m + j*n) % len;
out_map[(i*m*m_inv + j*n*n_inv) % len] = i*m + j;
}
}
}
if (inv) {
for (int i = 0; i < m; i++) {
int *in = &in_map[i*n + 1]; /* Skip the DC */
for (int j = 0; j < ((n - 1) >> 1); j++)
FFSWAP(int, in[j], in[n - j - 2]);
}
}
s->map_dir = opts ? opts->map_dir : FF_TX_MAP_GATHER;
return 0;
}
static inline int split_radix_permutation(int i, int len, int inv)
{
len >>= 1;
if (len <= 1)
return i & 1;
if (!(i & len))
return split_radix_permutation(i, len, inv) * 2;
len >>= 1;
return split_radix_permutation(i, len, inv) * 4 + 1 - 2*(!(i & len) ^ inv);
}
int ff_tx_gen_ptwo_revtab(AVTXContext *s, FFTXCodeletOptions *opts)
{
int len = s->len;
if (!(s->map = av_malloc(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
if (opts && opts->map_dir == FF_TX_MAP_SCATTER) {
for (int i = 0; i < s->len; i++)
s->map[-split_radix_permutation(i, len, s->inv) & (len - 1)] = i;
} else {
for (int i = 0; i < s->len; i++)
s->map[i] = -split_radix_permutation(i, len, s->inv) & (len - 1);
}
s->map_dir = opts ? opts->map_dir : FF_TX_MAP_GATHER;
return 0;
}
int ff_tx_gen_inplace_map(AVTXContext *s, int len)
{
int *src_map, out_map_idx = 0;
if (!s->sub || !s->sub->map)
return AVERROR(EINVAL);
if (!(s->map = av_mallocz(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
src_map = s->sub->map;
/* The first coefficient is always already in-place */
for (int src = 1; src < s->len; src++) {
int dst = src_map[src];
int found = 0;
if (dst <= src)
continue;
/* This just checks if a closed loop has been encountered before,
* and if so, skips it, since to fully permute a loop we must only
* enter it once. */
do {
for (int j = 0; j < out_map_idx; j++) {
if (dst == s->map[j]) {
found = 1;
break;
}
}
dst = src_map[dst];
} while (dst != src && !found);
if (!found)
s->map[out_map_idx++] = src;
}
s->map[out_map_idx++] = 0;
return 0;
}
static void parity_revtab_generator(int *revtab, int n, int inv, int offset,
int is_dual, int dual_high, int len,
int basis, int dual_stride, int inv_lookup)
{
len >>= 1;
if (len <= basis) {
int k1, k2, stride, even_idx, odd_idx;
is_dual = is_dual && dual_stride;
dual_high = is_dual & dual_high;
stride = is_dual ? FFMIN(dual_stride, len) : 0;
even_idx = offset + dual_high*(stride - 2*len);
odd_idx = even_idx + len + (is_dual && !dual_high)*len + dual_high*len;
for (int i = 0; i < len; i++) {
k1 = -split_radix_permutation(offset + i*2 + 0, n, inv) & (n - 1);
k2 = -split_radix_permutation(offset + i*2 + 1, n, inv) & (n - 1);
if (inv_lookup) {
revtab[even_idx++] = k1;
revtab[odd_idx++] = k2;
} else {
revtab[k1] = even_idx++;
revtab[k2] = odd_idx++;
}
if (stride && !((i + 1) % stride)) {
even_idx += stride;
odd_idx += stride;
}
}
return;
}
parity_revtab_generator(revtab, n, inv, offset,
0, 0, len >> 0, basis, dual_stride, inv_lookup);
parity_revtab_generator(revtab, n, inv, offset + (len >> 0),
1, 0, len >> 1, basis, dual_stride, inv_lookup);
parity_revtab_generator(revtab, n, inv, offset + (len >> 0) + (len >> 1),
1, 1, len >> 1, basis, dual_stride, inv_lookup);
}
int ff_tx_gen_split_radix_parity_revtab(AVTXContext *s, int len, int inv,
FFTXCodeletOptions *opts,
int basis, int dual_stride)
{
basis >>= 1;
if (len < basis)
return AVERROR(EINVAL);
if (!(s->map = av_mallocz(len*sizeof(*s->map))))
return AVERROR(ENOMEM);
av_assert0(!dual_stride || !(dual_stride & (dual_stride - 1)));
av_assert0(dual_stride <= basis);
parity_revtab_generator(s->map, len, inv, 0, 0, 0, len,
basis, dual_stride,
opts ? opts->map_dir == FF_TX_MAP_GATHER : FF_TX_MAP_GATHER);
s->map_dir = opts ? opts->map_dir : FF_TX_MAP_GATHER;
return 0;
}
static void reset_ctx(AVTXContext *s, int free_sub)
{
if (!s)
return;
if (s->sub)
for (int i = 0; i < TX_MAX_SUB; i++)
reset_ctx(&s->sub[i], free_sub + 1);
if (s->cd_self && s->cd_self->uninit)
s->cd_self->uninit(s);
if (free_sub)
av_freep(&s->sub);
av_freep(&s->map);
av_freep(&s->exp);
av_freep(&s->tmp);
/* Nothing else needs to be reset, it gets overwritten if another
* ff_tx_init_subtx() call is made. */
s->nb_sub = 0;
s->opaque = NULL;
memset(s->fn, 0, sizeof(*s->fn));
}
void ff_tx_clear_ctx(AVTXContext *s)
{
reset_ctx(s, 0);
}
av_cold void av_tx_uninit(AVTXContext **ctx)
{
if (!(*ctx))
return;
reset_ctx(*ctx, 1);
av_freep(ctx);
}
static av_cold int ff_tx_null_init(AVTXContext *s, const FFTXCodelet *cd,
uint64_t flags, FFTXCodeletOptions *opts,
int len, int inv, const void *scale)
{
/* Can only handle one sample+type to one sample+type transforms */
if (TYPE_IS(MDCT, s->type) || TYPE_IS(RDFT, s->type))
return AVERROR(EINVAL);
return 0;
}
/* Null transform when the length is 1 */
static void ff_tx_null(AVTXContext *s, void *_out, void *_in, ptrdiff_t stride)
{
memcpy(_out, _in, stride);
}
static const FFTXCodelet ff_tx_null_def = {
.name = NULL_IF_CONFIG_SMALL("null"),
.function = ff_tx_null,
.type = TX_TYPE_ANY,
.flags = AV_TX_UNALIGNED | FF_TX_ALIGNED |
FF_TX_OUT_OF_PLACE | AV_TX_INPLACE,
.factors[0] = TX_FACTOR_ANY,
.min_len = 1,
.max_len = 1,
.init = ff_tx_null_init,
.cpu_flags = FF_TX_CPU_FLAGS_ALL,
.prio = FF_TX_PRIO_MAX,
};
static const FFTXCodelet * const ff_tx_null_list[] = {
&ff_tx_null_def,
NULL,
};
/* Array of all compiled codelet lists. Order is irrelevant. */
static const FFTXCodelet * const * const codelet_list[] = {
ff_tx_codelet_list_float_c,
ff_tx_codelet_list_double_c,
ff_tx_codelet_list_int32_c,
ff_tx_null_list,
#if HAVE_X86ASM
ff_tx_codelet_list_float_x86,
#endif
#if ARCH_AARCH64
ff_tx_codelet_list_float_aarch64,
#endif
};
static const int codelet_list_num = FF_ARRAY_ELEMS(codelet_list);
static const int cpu_slow_mask = AV_CPU_FLAG_SSE2SLOW | AV_CPU_FLAG_SSE3SLOW |
AV_CPU_FLAG_ATOM | AV_CPU_FLAG_SSSE3SLOW |
AV_CPU_FLAG_AVXSLOW | AV_CPU_FLAG_SLOW_GATHER;
static const int cpu_slow_penalties[][2] = {
{ AV_CPU_FLAG_SSE2SLOW, 1 + 64 },
{ AV_CPU_FLAG_SSE3SLOW, 1 + 64 },
{ AV_CPU_FLAG_SSSE3SLOW, 1 + 64 },
{ AV_CPU_FLAG_ATOM, 1 + 128 },
{ AV_CPU_FLAG_AVXSLOW, 1 + 128 },
{ AV_CPU_FLAG_SLOW_GATHER, 1 + 32 },
};
static int get_codelet_prio(const FFTXCodelet *cd, int cpu_flags, int len)
{
int prio = cd->prio;
int max_factor = 0;
/* If the CPU has a SLOW flag, and the instruction is also flagged
* as being slow for such, reduce its priority */
for (int i = 0; i < FF_ARRAY_ELEMS(cpu_slow_penalties); i++) {
if ((cpu_flags & cd->cpu_flags) & cpu_slow_penalties[i][0])
prio -= cpu_slow_penalties[i][1];
}
/* Prioritize aligned-only codelets */
if ((cd->flags & FF_TX_ALIGNED) && !(cd->flags & AV_TX_UNALIGNED))
prio += 64;
/* Codelets for specific lengths are generally faster */
if ((len == cd->min_len) && (len == cd->max_len))
prio += 64;
/* Forward-only or inverse-only transforms are generally better */
if ((cd->flags & (FF_TX_FORWARD_ONLY | FF_TX_INVERSE_ONLY)))
prio += 64;
/* Larger factors are generally better */
for (int i = 0; i < TX_MAX_SUB; i++)
max_factor = FFMAX(cd->factors[i], max_factor);
if (max_factor)
prio += 16*max_factor;
return prio;
}
typedef struct FFTXLenDecomp {
int len;
int len2;
int prio;
const FFTXCodelet *cd;
} FFTXLenDecomp;
static int cmp_decomp(FFTXLenDecomp *a, FFTXLenDecomp *b)
{
return FFDIFFSIGN(b->prio, a->prio);
}
int ff_tx_decompose_length(int dst[TX_MAX_DECOMPOSITIONS], enum AVTXType type,
int len, int inv)
{
int nb_decomp = 0;
FFTXLenDecomp ld[TX_MAX_DECOMPOSITIONS];
int codelet_list_idx = codelet_list_num;
const int cpu_flags = av_get_cpu_flags();
/* Loop through all codelets in all codelet lists to find matches
* to the requirements */
while (codelet_list_idx--) {
const FFTXCodelet * const * list = codelet_list[codelet_list_idx];
const FFTXCodelet *cd = NULL;
while ((cd = *list++)) {
int fl = len;
int skip = 0, prio;
int factors_product = 1, factors_mod = 0;
if (nb_decomp >= TX_MAX_DECOMPOSITIONS)
goto sort;
/* Check if the type matches */
if (cd->type != TX_TYPE_ANY && type != cd->type)
continue;
/* Check direction for non-orthogonal codelets */
if (((cd->flags & FF_TX_FORWARD_ONLY) && inv) ||
((cd->flags & (FF_TX_INVERSE_ONLY | AV_TX_FULL_IMDCT)) && !inv) ||
((cd->flags & (FF_TX_FORWARD_ONLY | AV_TX_REAL_TO_REAL)) && inv) ||
((cd->flags & (FF_TX_FORWARD_ONLY | AV_TX_REAL_TO_IMAGINARY)) && inv))
continue;
/* Check if the CPU supports the required ISA */
if (cd->cpu_flags != FF_TX_CPU_FLAGS_ALL &&
!(cpu_flags & (cd->cpu_flags & ~cpu_slow_mask)))
continue;
for (int i = 0; i < TX_MAX_FACTORS; i++) {
if (!cd->factors[i] || (fl == 1))
break;
if (cd->factors[i] == TX_FACTOR_ANY) {
factors_mod++;
factors_product *= fl;
} else if (!(fl % cd->factors[i])) {
factors_mod++;
if (cd->factors[i] == 2) {
int b = ff_ctz(fl);
fl >>= b;
factors_product <<= b;
} else {
do {
fl /= cd->factors[i];
factors_product *= cd->factors[i];
} while (!(fl % cd->factors[i]));
}
}
}
/* Disqualify if factor requirements are not satisfied or if trivial */
if ((factors_mod < cd->nb_factors) || (len == factors_product))
continue;
if (av_gcd(factors_product, fl) != 1)
continue;
/* Check if length is supported and factorization was successful */
if ((factors_product < cd->min_len) ||
(cd->max_len != TX_LEN_UNLIMITED && (factors_product > cd->max_len)))
continue;
prio = get_codelet_prio(cd, cpu_flags, factors_product) * factors_product;
/* Check for duplicates */
for (int i = 0; i < nb_decomp; i++) {
if (factors_product == ld[i].len) {
/* Update priority if new one is higher */
if (prio > ld[i].prio)
ld[i].prio = prio;
skip = 1;
break;
}
}
/* Add decomposition if unique */
if (!skip) {
ld[nb_decomp].cd = cd;
ld[nb_decomp].len = factors_product;
ld[nb_decomp].len2 = fl;
ld[nb_decomp].prio = prio;
nb_decomp++;
}
}
}
if (!nb_decomp)
return AVERROR(EINVAL);
sort:
AV_QSORT(ld, nb_decomp, FFTXLenDecomp, cmp_decomp);
for (int i = 0; i < nb_decomp; i++) {
if (ld[i].cd->nb_factors > 1)
dst[i] = ld[i].len2;
else
dst[i] = ld[i].len;
}
return nb_decomp;
}
int ff_tx_gen_default_map(AVTXContext *s, FFTXCodeletOptions *opts)
{
s->map = av_malloc(s->len*sizeof(*s->map));
if (!s->map)
return AVERROR(ENOMEM);
s->map[0] = 0; /* DC is always at the start */
if (s->inv) /* Reversing the ACs flips the transform direction */
for (int i = 1; i < s->len; i++)
s->map[i] = s->len - i;
else
for (int i = 1; i < s->len; i++)
s->map[i] = i;
s->map_dir = FF_TX_MAP_GATHER;
return 0;
}
#if !CONFIG_SMALL
static void print_flags(AVBPrint *bp, uint64_t f)
{
int prev = 0;
const char *sep = ", ";
av_bprintf(bp, "flags: [");
if ((f & FF_TX_ALIGNED) && ++prev)
av_bprintf(bp, "aligned");
if ((f & AV_TX_UNALIGNED) && ++prev)
av_bprintf(bp, "%sunaligned", prev > 1 ? sep : "");
if ((f & AV_TX_INPLACE) && ++prev)
av_bprintf(bp, "%sinplace", prev > 1 ? sep : "");
if ((f & FF_TX_OUT_OF_PLACE) && ++prev)
av_bprintf(bp, "%sout_of_place", prev > 1 ? sep : "");
if ((f & FF_TX_FORWARD_ONLY) && ++prev)
av_bprintf(bp, "%sfwd_only", prev > 1 ? sep : "");
if ((f & FF_TX_INVERSE_ONLY) && ++prev)
av_bprintf(bp, "%sinv_only", prev > 1 ? sep : "");
if ((f & FF_TX_PRESHUFFLE) && ++prev)
av_bprintf(bp, "%spreshuf", prev > 1 ? sep : "");
if ((f & AV_TX_FULL_IMDCT) && ++prev)
av_bprintf(bp, "%simdct_full", prev > 1 ? sep : "");
if ((f & AV_TX_REAL_TO_REAL) && ++prev)
av_bprintf(bp, "%sreal_to_real", prev > 1 ? sep : "");
if ((f & AV_TX_REAL_TO_IMAGINARY) && ++prev)
av_bprintf(bp, "%sreal_to_imaginary", prev > 1 ? sep : "");
if ((f & FF_TX_ASM_CALL) && ++prev)
av_bprintf(bp, "%sasm_call", prev > 1 ? sep : "");
av_bprintf(bp, "]");
}
static void print_type(AVBPrint *bp, enum AVTXType type)
{
av_bprintf(bp, "%s",
type == TX_TYPE_ANY ? "any" :
type == AV_TX_FLOAT_FFT ? "fft_float" :
type == AV_TX_FLOAT_MDCT ? "mdct_float" :
type == AV_TX_FLOAT_RDFT ? "rdft_float" :
type == AV_TX_FLOAT_DCT_I ? "dctI_float" :
type == AV_TX_FLOAT_DST_I ? "dstI_float" :
type == AV_TX_DOUBLE_FFT ? "fft_double" :
type == AV_TX_DOUBLE_MDCT ? "mdct_double" :
type == AV_TX_DOUBLE_RDFT ? "rdft_double" :
type == AV_TX_DOUBLE_DCT_I ? "dctI_double" :
type == AV_TX_DOUBLE_DST_I ? "dstI_double" :
type == AV_TX_INT32_FFT ? "fft_int32" :
type == AV_TX_INT32_MDCT ? "mdct_int32" :
type == AV_TX_INT32_RDFT ? "rdft_int32" :
type == AV_TX_INT32_DCT_I ? "dctI_int32" :
type == AV_TX_INT32_DST_I ? "dstI_int32" :
"unknown");
}
static void print_cd_info(const FFTXCodelet *cd, int prio, int len, int print_prio,
int log_level)
{
AVBPrint bp;
av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);
av_bprintf(&bp, "%s - type: ", cd->name);
print_type(&bp, cd->type);
av_bprintf(&bp, ", len: ");
if (!len) {
if (cd->min_len != cd->max_len)
av_bprintf(&bp, "[%i, ", cd->min_len);
if (cd->max_len == TX_LEN_UNLIMITED)
av_bprintf(&bp, "");
else
av_bprintf(&bp, "%i", cd->max_len);
} else {
av_bprintf(&bp, "%i", len);
}
if (cd->factors[1]) {
av_bprintf(&bp, "%s, factors", !len && cd->min_len != cd->max_len ? "]" : "");
if (!cd->nb_factors)
av_bprintf(&bp, ": [");
else
av_bprintf(&bp, "[%i]: [", cd->nb_factors);
for (int i = 0; i < TX_MAX_FACTORS; i++) {
if (i && cd->factors[i])
av_bprintf(&bp, ", ");
if (cd->factors[i] == TX_FACTOR_ANY)
av_bprintf(&bp, "any");
else if (cd->factors[i])
av_bprintf(&bp, "%i", cd->factors[i]);
else
break;
}
av_bprintf(&bp, "], ");
} else {
av_bprintf(&bp, "%s, factor: %i, ",
!len && cd->min_len != cd->max_len ? "]" : "", cd->factors[0]);
}
print_flags(&bp, cd->flags);
if (print_prio)
av_bprintf(&bp, ", prio: %i", prio);
av_log(NULL, log_level, "%s\n", bp.str);
}
static void print_tx_structure(AVTXContext *s, int depth)
{
const FFTXCodelet *cd = s->cd_self;
for (int i = 0; i <= depth; i++)
av_log(NULL, AV_LOG_DEBUG, " ");
print_cd_info(cd, cd->prio, s->len, 0, AV_LOG_DEBUG);
for (int i = 0; i < s->nb_sub; i++)
print_tx_structure(&s->sub[i], depth + 1);
}
#endif /* CONFIG_SMALL */
typedef struct TXCodeletMatch {
const FFTXCodelet *cd;
int prio;
} TXCodeletMatch;
static int cmp_matches(TXCodeletMatch *a, TXCodeletMatch *b)
{
return FFDIFFSIGN(b->prio, a->prio);
}
/* We want all factors to completely cover the length */
static inline int check_cd_factors(const FFTXCodelet *cd, int len)
{
int matches = 0, any_flag = 0;
for (int i = 0; i < TX_MAX_FACTORS; i++) {
int factor = cd->factors[i];
if (factor == TX_FACTOR_ANY) {
any_flag = 1;
matches++;
continue;
} else if (len <= 1 || !factor) {
break;
} else if (factor == 2) { /* Fast path */
int bits_2 = ff_ctz(len);
if (!bits_2)
continue; /* Factor not supported */
len >>= bits_2;
matches++;
} else {
int res = len % factor;
if (res)
continue; /* Factor not supported */
while (!res) {
len /= factor;
res = len % factor;
}
matches++;
}
}
return (cd->nb_factors <= matches) && (any_flag || len == 1);
}
av_cold int ff_tx_init_subtx(AVTXContext *s, enum AVTXType type,
uint64_t flags, FFTXCodeletOptions *opts,
int len, int inv, const void *scale)
{
int ret = 0;
AVTXContext *sub = NULL;
TXCodeletMatch *cd_tmp, *cd_matches = NULL;
unsigned int cd_matches_size = 0;
int codelet_list_idx = codelet_list_num;
int nb_cd_matches = 0;
#if !CONFIG_SMALL
AVBPrint bp;
#endif
/* We still accept functions marked with SLOW, even if the CPU is
* marked with the same flag, but we give them lower priority. */
const int cpu_flags = av_get_cpu_flags();
/* Flags the transform wants */
uint64_t req_flags = flags;
/* Flags the codelet may require to be present */
uint64_t inv_req_mask = AV_TX_FULL_IMDCT |
AV_TX_REAL_TO_REAL |
AV_TX_REAL_TO_IMAGINARY |
FF_TX_PRESHUFFLE |
FF_TX_ASM_CALL;
/* Unaligned codelets are compatible with the aligned flag */
if (req_flags & FF_TX_ALIGNED)
req_flags |= AV_TX_UNALIGNED;
/* If either flag is set, both are okay, so don't check for an exact match */
if ((req_flags & AV_TX_INPLACE) && (req_flags & FF_TX_OUT_OF_PLACE))
req_flags &= ~(AV_TX_INPLACE | FF_TX_OUT_OF_PLACE);
if ((req_flags & FF_TX_ALIGNED) && (req_flags & AV_TX_UNALIGNED))
req_flags &= ~(FF_TX_ALIGNED | AV_TX_UNALIGNED);
/* Loop through all codelets in all codelet lists to find matches
* to the requirements */
while (codelet_list_idx--) {
const FFTXCodelet * const * list = codelet_list[codelet_list_idx];
const FFTXCodelet *cd = NULL;
while ((cd = *list++)) {
/* Check if the type matches */
if (cd->type != TX_TYPE_ANY && type != cd->type)
continue;
/* Check direction for non-orthogonal codelets */
if (((cd->flags & FF_TX_FORWARD_ONLY) && inv) ||
((cd->flags & (FF_TX_INVERSE_ONLY | AV_TX_FULL_IMDCT)) && !inv) ||
((cd->flags & (FF_TX_FORWARD_ONLY | AV_TX_REAL_TO_REAL)) && inv) ||
((cd->flags & (FF_TX_FORWARD_ONLY | AV_TX_REAL_TO_IMAGINARY)) && inv))
continue;
/* Check if the requested flags match from both sides */
if (((req_flags & cd->flags) != (req_flags)) ||
((inv_req_mask & cd->flags) != (req_flags & inv_req_mask)))
continue;
/* Check if length is supported */
if ((len < cd->min_len) || (cd->max_len != -1 && (len > cd->max_len)))
continue;
/* Check if the CPU supports the required ISA */
if (cd->cpu_flags != FF_TX_CPU_FLAGS_ALL &&
!(cpu_flags & (cd->cpu_flags & ~cpu_slow_mask)))
continue;
/* Check for factors */
if (!check_cd_factors(cd, len))
continue;
/* Realloc array and append */
cd_tmp = av_fast_realloc(cd_matches, &cd_matches_size,
sizeof(*cd_tmp) * (nb_cd_matches + 1));
if (!cd_tmp) {
av_free(cd_matches);
return AVERROR(ENOMEM);
}
cd_matches = cd_tmp;
cd_matches[nb_cd_matches].cd = cd;
cd_matches[nb_cd_matches].prio = get_codelet_prio(cd, cpu_flags, len);
nb_cd_matches++;
}
}
#if !CONFIG_SMALL
/* Print debugging info */
av_bprint_init(&bp, 0, AV_BPRINT_SIZE_AUTOMATIC);
av_bprintf(&bp, "For transform of length %i, %s, ", len,
inv ? "inverse" : "forward");
print_type(&bp, type);
av_bprintf(&bp, ", ");
print_flags(&bp, flags);
av_bprintf(&bp, ", found %i matches%s", nb_cd_matches,
nb_cd_matches ? ":" : ".");
#endif
/* No matches found */
if (!nb_cd_matches)
return AVERROR(ENOSYS);
/* Sort the list */
AV_QSORT(cd_matches, nb_cd_matches, TXCodeletMatch, cmp_matches);
#if !CONFIG_SMALL
av_log(NULL, AV_LOG_TRACE, "%s\n", bp.str);
for (int i = 0; i < nb_cd_matches; i++) {
av_log(NULL, AV_LOG_TRACE, " %i: ", i + 1);
print_cd_info(cd_matches[i].cd, cd_matches[i].prio, 0, 1, AV_LOG_TRACE);
}
#endif
if (!s->sub) {
s->sub = sub = av_mallocz(TX_MAX_SUB*sizeof(*sub));
if (!sub) {
ret = AVERROR(ENOMEM);
goto end;
}
}
/* Attempt to initialize each */
for (int i = 0; i < nb_cd_matches; i++) {
const FFTXCodelet *cd = cd_matches[i].cd;
AVTXContext *sctx = &s->sub[s->nb_sub];
sctx->len = len;
sctx->inv = inv;
sctx->type = type;
sctx->flags = cd->flags | flags;
sctx->cd_self = cd;
s->fn[s->nb_sub] = cd->function;
s->cd[s->nb_sub] = cd;
ret = 0;
if (cd->init)
ret = cd->init(sctx, cd, flags, opts, len, inv, scale);
if (ret >= 0) {
if (opts && opts->map_dir != FF_TX_MAP_NONE &&
sctx->map_dir == FF_TX_MAP_NONE) {
/* If a specific map direction was requested, and it doesn't
* exist, create one.*/
sctx->map = av_malloc(len*sizeof(*sctx->map));
if (!sctx->map) {
ret = AVERROR(ENOMEM);
goto end;
}
for (int i = 0; i < len; i++)
sctx->map[i] = i;
} else if (opts && (opts->map_dir != sctx->map_dir)) {
int *tmp = av_malloc(len*sizeof(*sctx->map));
if (!tmp) {
ret = AVERROR(ENOMEM);
goto end;
}
memcpy(tmp, sctx->map, len*sizeof(*sctx->map));
for (int i = 0; i < len; i++)
sctx->map[tmp[i]] = i;
av_free(tmp);
}
s->nb_sub++;
goto end;
}
s->fn[s->nb_sub] = NULL;
s->cd[s->nb_sub] = NULL;
reset_ctx(sctx, 0);
if (ret == AVERROR(ENOMEM))
break;
}
if (!s->nb_sub)
av_freep(&s->sub);
end:
av_free(cd_matches);
return ret;
}
av_cold int av_tx_init(AVTXContext **ctx, av_tx_fn *tx, enum AVTXType type,
int inv, int len, const void *scale, uint64_t flags)
{
int ret;
AVTXContext tmp = { 0 };
const double default_scale_d = 1.0;
const float default_scale_f = 1.0f;
if (!len || type >= AV_TX_NB || !ctx || !tx)
return AVERROR(EINVAL);
if (!(flags & AV_TX_UNALIGNED))
flags |= FF_TX_ALIGNED;
if (!(flags & AV_TX_INPLACE))
flags |= FF_TX_OUT_OF_PLACE;
if (!scale && ((type == AV_TX_DOUBLE_MDCT) || (type == AV_TX_DOUBLE_DCT) ||
(type == AV_TX_DOUBLE_DCT_I) || (type == AV_TX_DOUBLE_DST_I) ||
(type == AV_TX_DOUBLE_RDFT)))
scale = &default_scale_d;
else if (!scale && !TYPE_IS(FFT, type))
scale = &default_scale_f;
ret = ff_tx_init_subtx(&tmp, type, flags, NULL, len, inv, scale);
if (ret < 0)
return ret;
*ctx = &tmp.sub[0];
*tx = tmp.fn[0];
#if !CONFIG_SMALL
av_log(NULL, AV_LOG_DEBUG, "Transform tree:\n");
print_tx_structure(*ctx, 0);
#endif
return ret;
}