mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Cuda conv transpose (#645)
* Cuda kernel for conv-transpose. * Fix the cuda kernel. * Fix the tests.
This commit is contained in:
@ -111,6 +111,71 @@ __device__ void conv2d(
|
||||
dst[dst_i] = static_cast<T>(d);
|
||||
}
|
||||
|
||||
// Naive implementation of conv_transpose2d.
|
||||
template <typename T, typename A>
|
||||
__device__ void conv_transpose2d(
|
||||
const size_t src_numel,
|
||||
const size_t w_out,
|
||||
const size_t h_out,
|
||||
const size_t stride,
|
||||
const size_t padding,
|
||||
const size_t out_padding,
|
||||
const size_t *info,
|
||||
const T *src,
|
||||
const T *kernel,
|
||||
T *dst
|
||||
) {
|
||||
const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
// src: (b_size, c_in, h_in, w_in)
|
||||
// k: (c_in, c_out, h_k, w_k)
|
||||
const size_t *src_dims = info;
|
||||
const size_t *src_s = info + 4;
|
||||
const size_t *k_dims = info + 8;
|
||||
const size_t *k_s = info + 12;
|
||||
const size_t h_k = k_dims[2];
|
||||
const size_t w_k = k_dims[3];
|
||||
const size_t c_out = k_dims[1];
|
||||
const size_t c_in = src_dims[1];
|
||||
const size_t h_in = src_dims[2];
|
||||
const size_t w_in = src_dims[3];
|
||||
if (dst_i >= src_dims[0] * c_out * w_out * h_out) {
|
||||
return;
|
||||
}
|
||||
|
||||
// TODO
|
||||
const size_t b_idx = dst_i / (w_out * h_out * c_out);
|
||||
const size_t dst_c_idx = (dst_i / (w_out * h_out)) % c_out;
|
||||
// NCHW layout.
|
||||
const size_t out_y = (dst_i / w_out) % h_out;
|
||||
const size_t out_x = dst_i % w_out;
|
||||
|
||||
const size_t src_idx0 = b_idx * src_s[0];
|
||||
A d = 0;
|
||||
for (int k_x = 0; k_x < (int)w_k; ++k_x) {
|
||||
// let out_x = inp_x * p.stride + k_x - p.padding;
|
||||
int inp_x_stride = (int)(out_x + padding) - k_x;
|
||||
if (inp_x_stride < 0 || inp_x_stride % stride) {
|
||||
continue;
|
||||
}
|
||||
int inp_x = inp_x_stride / stride;
|
||||
if (inp_x >= w_in) continue;
|
||||
for (int k_y = 0; k_y < (int)h_k; ++k_y) {
|
||||
int inp_y_stride = (int)(out_y + padding) - k_y;
|
||||
if (inp_y_stride < 0 || inp_y_stride % stride) {
|
||||
continue;
|
||||
}
|
||||
int inp_y = inp_y_stride / stride;
|
||||
if (inp_y >= h_in) continue;
|
||||
for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) {
|
||||
const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + inp_y * src_s[2] + inp_x * src_s[3];
|
||||
const size_t k_idx = src_c_idx * k_s[0] + dst_c_idx * k_s[1] + k_y * k_s[2] + k_x * k_s[3];
|
||||
d += static_cast<A>(src[src_idx]) * static_cast<A>(kernel[k_idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dst[dst_i] = static_cast<T>(d);
|
||||
}
|
||||
|
||||
template <typename T, typename A>
|
||||
__device__ void avg_pool2d(
|
||||
const size_t src_numel,
|
||||
@ -293,6 +358,22 @@ extern "C" __global__ void FN_NAME( \
|
||||
conv2d<TYPENAME, TYPEACC>(src_numel, w_out, h_out, stride, padding, info, src, kernel, dst); \
|
||||
} \
|
||||
|
||||
#define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \
|
||||
extern "C" __global__ void FN_NAME( \
|
||||
const size_t src_numel, \
|
||||
const size_t w_out, \
|
||||
const size_t h_out, \
|
||||
const size_t stride, \
|
||||
const size_t padding, \
|
||||
const size_t out_padding, \
|
||||
const size_t *info, \
|
||||
const TYPENAME *src, \
|
||||
const TYPENAME *kernel, \
|
||||
TYPENAME *dst \
|
||||
) { \
|
||||
conv_transpose2d<TYPENAME, TYPEACC>(src_numel, w_out, h_out, stride, padding, out_padding, info, src, kernel, dst); \
|
||||
} \
|
||||
|
||||
#define AVG_POOL2D_OP(TYPENAME, TYPEACC, FN_NAME) \
|
||||
extern "C" __global__ void FN_NAME( \
|
||||
const size_t src_numel, \
|
||||
@ -337,6 +418,7 @@ extern "C" __global__ void FN_NAME( \
|
||||
#if __CUDA_ARCH__ >= 800
|
||||
CONV1D_OP(__nv_bfloat16, float, conv1d_bf16)
|
||||
CONV2D_OP(__nv_bfloat16, float, conv2d_bf16)
|
||||
CONVT2D_OP(__nv_bfloat16, float, conv_transpose2d_bf16)
|
||||
AVG_POOL2D_OP(__nv_bfloat16, float, avg_pool2d_bf16)
|
||||
MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16)
|
||||
UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16)
|
||||
@ -345,6 +427,7 @@ UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16)
|
||||
#if __CUDA_ARCH__ >= 530
|
||||
CONV1D_OP(__half, float, conv1d_f16)
|
||||
CONV2D_OP(__half, float, conv2d_f16)
|
||||
CONVT2D_OP(__half, float, conv_transpose2d_f16)
|
||||
AVG_POOL2D_OP(__half, float, avg_pool2d_f16)
|
||||
MAX_POOL2D_OP(__half, max_pool2d_f16)
|
||||
UPSAMPLE_NEAREST2D_OP(__half, upsample_nearest2d_f16)
|
||||
@ -360,6 +443,11 @@ CONV2D_OP(double, double, conv2d_f64)
|
||||
CONV2D_OP(uint8_t, uint8_t, conv2d_u8)
|
||||
CONV2D_OP(uint32_t, uint32_t, conv2d_u32)
|
||||
|
||||
CONVT2D_OP(float, float, conv_transpose2d_f32)
|
||||
CONVT2D_OP(double, double, conv_transpose2d_f64)
|
||||
CONVT2D_OP(uint8_t, uint8_t, conv_transpose2d_u8)
|
||||
CONVT2D_OP(uint32_t, uint32_t, conv_transpose2d_u32)
|
||||
|
||||
AVG_POOL2D_OP(float, float, avg_pool2d_f32)
|
||||
AVG_POOL2D_OP(double, double, avg_pool2d_f64)
|
||||
AVG_POOL2D_OP(uint8_t, uint8_t, avg_pool2d_u8)
|
||||
|
Reference in New Issue
Block a user