Add avg_pool2d metal implementation for the metal backend (#1869)

* implement metal avg pool 2d

* fixX

* add suggested precision workaround for the accumulator
This commit is contained in:
Thomas Santerre
2024-03-18 13:50:14 -04:00
committed by GitHub
parent 58605252e8
commit 04a61a9c72
5 changed files with 236 additions and 20 deletions

View File

@ -1044,8 +1044,46 @@ impl BackendStorage for MetalStorage {
crate::bail!("Metal conv_tranpose2d not implemented")
}
fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> {
crate::bail!("Metal avg_pool2d not implemented")
fn avg_pool2d(
&self,
inp_l: &Layout,
(w_k, h_k): (usize, usize),
(w_stride, h_stride): (usize, usize),
) -> Result<Self> {
let shape = inp_l.shape();
let (b_size, channels, width, height) = shape.dims4()?;
let strides = inp_l.stride();
let name = match self.dtype {
DType::F32 => "avg_pool2d_f32",
DType::F16 => "avg_pool2d_f16",
DType::BF16 => "avg_pool2d_bf16",
DType::U8 => "avg_pool2d_u8",
DType::U32 => "avg_pool2d_u32",
dtype => crate::bail!("Metal avg_pool2d {dtype:?} not implemented"),
};
let out_w = (width - w_k) / w_stride + 1;
let out_h = (height - h_k) / h_stride + 1;
let dst_el = out_w * out_h * b_size * channels;
let buffer = self.device.new_buffer(dst_el, self.dtype, "avg_pool2d")?;
let command_buffers = self.device.command_buffer()?;
candle_metal_kernels::call_pool2d(
&self.device.device,
&command_buffers,
&self.device.kernels,
name,
inp_l.dims(),
strides,
out_w,
out_h,
w_k,
h_k,
w_stride,
h_stride,
&self.buffer,
&buffer,
)
.map_err(MetalError::from)?;
Ok(Self::new(buffer, self.device.clone(), dst_el, self.dtype))
}
fn max_pool2d(
@ -1063,14 +1101,14 @@ impl BackendStorage for MetalStorage {
DType::BF16 => "max_pool2d_bf16",
DType::U8 => "max_pool2d_u8",
DType::U32 => "max_pool2d_u32",
dtype => crate::bail!("Metal upsample_nearest2d {dtype:?} not implemented"),
dtype => crate::bail!("Metal max_pool2d {dtype:?} not implemented"),
};
let out_w = (width - w_k) / w_stride + 1;
let out_h = (height - h_k) / h_stride + 1;
let dst_el = out_w * out_h * b_size * channels;
let buffer = self.device.new_buffer(dst_el, self.dtype, "max_pool2d")?;
let command_buffers = self.device.command_buffer()?;
candle_metal_kernels::call_max_pool2d(
candle_metal_kernels::call_pool2d(
&self.device.device,
&command_buffers,
&self.device.kernels,

View File

@ -2,9 +2,6 @@ use candle_core::{test_device, test_utils, Device, IndexOp, Result, Tensor};
// https://github.com/huggingface/candle/issues/364
fn avg_pool2d(dev: &Device) -> Result<()> {
if dev.is_metal() {
return Ok(());
}
let data: Vec<f32> = vec![
1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
];

View File

@ -206,6 +206,67 @@ kernel void FN_NAME( \
upsample_nearest2d<TYPENAME>(w_out, h_out, w_scale, h_scale, dims, strides, src, dst, tid); \
} \
template <typename T, typename A>
METAL_FUNC void avg_pool2d(
constant size_t &w_k,
constant size_t &h_k,
constant size_t &w_stride,
constant size_t &h_stride,
constant size_t *src_dims,
constant size_t *src_strides,
device const T *src,
device T *dst,
uint tid [[ thread_position_in_grid ]]
) {
const size_t c = src_dims[1];
const size_t w_in = src_dims[2];
const size_t h_in = src_dims[3];
const size_t w_out = (w_in - w_k) / w_stride + 1;
const size_t h_out = (h_in - h_k) / h_stride + 1;
if (tid >= src_dims[0] * c * w_out * h_out) {
return;
}
const size_t b_idx = tid / (w_out * h_out * c);
const size_t c_idx = (tid / (w_out * h_out)) % c;
const size_t dst_w = (tid / h_out) % w_out;
const size_t dst_h = tid % h_out;
const size_t src_idx0 = b_idx * src_strides[0];
A d = 0;
for (size_t w_offset = 0; w_offset < w_k; ++w_offset) {
size_t src_w = w_stride * dst_w + w_offset;
if (src_w >= w_in){
continue;
}
for (size_t h_offset = 0; h_offset < h_k; ++h_offset) {
size_t src_h = h_stride * dst_h + h_offset;
if (src_h >= h_in) {
continue;
}
const size_t src_idx = src_idx0 + c_idx * src_strides[1] + src_w * src_strides[2] + src_h * src_strides[3];
d += static_cast<A>(src[src_idx]);
}
}
dst[tid] = static_cast<T>(d / (w_k * h_k));
}
#define AVGPOOL2D_OP(TYPENAME, TYPEACC, FN_NAME) \
kernel void FN_NAME( \
constant size_t &w_k, \
constant size_t &h_k, \
constant size_t &w_s, \
constant size_t &h_s, \
constant size_t *src_dims, \
constant size_t *src_s, \
device const TYPENAME *src, \
device TYPENAME *dst, \
uint tid [[ thread_position_in_grid ]] \
) { \
avg_pool2d<TYPENAME, TYPEACC>(w_k, h_k, w_s, h_s, src_dims, src_s, src, dst, tid); \
} \
template <typename T>
METAL_FUNC void max_pool2d(
constant size_t &w_k,
@ -293,3 +354,11 @@ MAXPOOL2D_OP(uint8_t, max_pool2d_u8)
#if defined(__HAVE_BFLOAT__)
MAXPOOL2D_OP(bfloat, max_pool2d_bf16)
#endif
AVGPOOL2D_OP(float, float, avg_pool2d_f32)
AVGPOOL2D_OP(half, float, avg_pool2d_f16)
AVGPOOL2D_OP(uint32_t, uint32_t, avg_pool2d_u32)
AVGPOOL2D_OP(uint8_t, uint8_t, avg_pool2d_u8)
#if defined(__HAVE_BFLOAT__)
AVGPOOL2D_OP(bfloat, float, avg_pool2d_bf16)
#endif

View File

@ -1827,7 +1827,7 @@ fn divide(m: usize, b: usize) -> NSUInteger {
}
#[allow(clippy::too_many_arguments)]
pub fn call_max_pool2d(
pub fn call_pool2d(
device: &Device,
command_buffer: &CommandBufferRef,
kernels: &Kernels,

View File

@ -1369,7 +1369,7 @@ fn index_add() {
}
}
fn run_max_pool2d<T: Clone>(
fn run_pool2d<T: Clone>(
v: &[T],
(w_k, h_k): (usize, usize),
(w_stride, h_stride): (usize, usize),
@ -1386,7 +1386,7 @@ fn run_max_pool2d<T: Clone>(
let input = new_buffer(&device, v);
let output = new_buffer(&device, &vec![0.0f32; dst_el]);
let kernels = Kernels::new();
call_max_pool2d(
call_pool2d(
&device,
command_buffer,
&kernels,
@ -1417,7 +1417,7 @@ fn max_pool2d_f32() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1434,7 +1434,7 @@ fn max_pool2d_f32() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1454,7 +1454,7 @@ fn max_pool2d_f16() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1474,7 +1474,7 @@ fn max_pool2d_f16() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1497,7 +1497,7 @@ fn max_pool2d_bf16() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1517,7 +1517,7 @@ fn max_pool2d_bf16() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1540,7 +1540,7 @@ fn max_pool2d_u8() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1557,7 +1557,7 @@ fn max_pool2d_u8() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1577,7 +1577,7 @@ fn max_pool2d_u32() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1594,7 +1594,7 @@ fn max_pool2d_u32() {
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 2;
let results = run_max_pool2d(
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
@ -1605,3 +1605,115 @@ fn max_pool2d_u32() {
let expected = vec![5, 7, 13, 15];
assert_eq!(results, expected);
}
#[test]
fn avg_pool2d_f32() {
// kernel 2 stride 1
let v: Vec<f32> = (0..16).map(|v| v as f32).collect();
let shape = vec![1, 1, 4, 4];
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
&shape,
&strides,
"avg_pool2d_f32",
);
let expected = vec![
2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000,
];
assert_eq!(results, expected);
}
#[test]
fn avg_pool2d_f16() {
// kernel 2 stride 1
let v: Vec<f16> = (0..16).map(|v| f16::from_f32(v as f32)).collect();
let shape = vec![1, 1, 4, 4];
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
&shape,
&strides,
"avg_pool2d_f16",
);
let expected = vec![
2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000,
]
.iter()
.map(|v| f16::from_f32(*v))
.collect::<Vec<_>>();
assert_eq!(results, expected);
}
#[test]
fn avg_pool2d_bf16() {
// kernel 2 stride 1
let v: Vec<bf16> = (0..16).map(|v| bf16::from_f32(v as f32)).collect();
let shape = vec![1, 1, 4, 4];
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
&shape,
&strides,
"avg_pool2d_bf16",
);
let expected = vec![
2.5000, 3.5000, 4.5000, 6.5000, 7.5000, 8.5000, 10.5000, 11.5000, 12.5000,
]
.iter()
.map(|v| bf16::from_f32(*v))
.collect::<Vec<_>>();
assert_eq!(results, expected);
}
#[test]
fn avg_pool2d_u8() {
// kernel 2 stride 1
let v: Vec<u8> = (0..16).map(|v| v as u8).collect();
let shape = vec![1, 1, 4, 4];
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
&shape,
&strides,
"avg_pool2d_u8",
);
let expected = vec![2, 3, 4, 6, 7, 8, 10, 11, 12];
assert_eq!(results, expected);
}
#[test]
fn avg_pool2d_u32() {
// kernel 2 stride 1
let v: Vec<u32> = (0..16).map(|v| v as u32).collect();
let shape = vec![1, 1, 4, 4];
let strides = vec![16, 16, 4, 1];
let kernel = 2;
let stride = 1;
let results = run_pool2d(
&v,
(kernel, kernel),
(stride, stride),
&shape,
&strides,
"avg_pool2d_u32",
);
let expected = vec![2, 3, 4, 6, 7, 8, 10, 11, 12];
assert_eq!(results, expected);
}