Merge branch 'main' into ivarflakstad/metal-reduce-2

This commit is contained in:
Ivar Flakstad
2024-01-22 18:41:46 +01:00
94 changed files with 9088 additions and 1653 deletions

View File

@ -1,4 +1,4 @@
use crate::benchmarks::{bench_name, device, BenchDevice};
use crate::benchmarks::{BenchDevice, BenchDeviceHandler};
use candle_core::{DType, Device, Storage, Tensor};
use criterion::{black_box, criterion_group, Criterion, Throughput};
use half::{bf16, f16};
@ -12,6 +12,7 @@ fn run_arg_min(a: &Tensor) {
a.argmin(2).unwrap();
}
// TODO: Remove before merging. Softmax impls live in candle-nn, so this is a temporary workaround.
fn softmax(a: &Tensor) -> candle_core::Result<()> {
use candle_core::{backend::BackendStorage, DType};
let (storage, layout) = a.storage_and_layout();
@ -53,20 +54,21 @@ fn softmax(a: &Tensor) -> candle_core::Result<()> {
}
fn criterion_benchmark(c: &mut Criterion) {
let device = device().unwrap();
let handler = BenchDeviceHandler::new().unwrap();
let (lo, up) = (-1000.0f32, 1000.0f32);
run_softmax(c, &device, (lo, up));
run_softmax(c, &device, (f16::from_f32(lo), f16::from_f32(up)));
run_softmax(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)));
for device in handler.devices {
run_softmax(c, &device, (lo, up));
run_softmax(c, &device, (f16::from_f32(lo), f16::from_f32(up)));
run_softmax(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)));
run_reduce(c, &device, (lo, up));
run_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)));
run_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)));
run_reduce(c, &device, (lo, up));
run_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)));
run_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)));
run_arg_reduce(c, &device, (lo, up));
run_arg_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)));
run_arg_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)));
run_arg_reduce(c, &device, (lo, up));
run_arg_reduce(c, &device, (f16::from_f32(lo), f16::from_f32(up)));
run_arg_reduce(c, &device, (bf16::from_f32(lo), bf16::from_f32(up)));
}
}
fn run_softmax<T: candle_core::FloatDType>(c: &mut Criterion, device: &Device, (lo, up): (T, T)) {
@ -75,8 +77,8 @@ fn run_softmax<T: candle_core::FloatDType>(c: &mut Criterion, device: &Device, (
}
let b = 1;
let m = 2048;
let k = 2048;
let m = 1024;
let k = 1024;
let a = Tensor::rand(lo, up, (b, m, k), &device).unwrap();
let flops = b * m * k * T::DTYPE.size_in_bytes();
@ -88,7 +90,7 @@ fn run_softmax<T: candle_core::FloatDType>(c: &mut Criterion, device: &Device, (
_ => "softmax",
};
let mut group = c.benchmark_group(bench_name(name));
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
@ -105,8 +107,8 @@ fn run_softmax<T: candle_core::FloatDType>(c: &mut Criterion, device: &Device, (
fn run_reduce<T: candle_core::FloatDType>(c: &mut Criterion, device: &Device, (lo, up): (T, T)) {
let b = 1;
let m = 2048;
let k = 2048;
let m = 1024;
let k = 1024;
let a = Tensor::rand(lo, up, (b, m, k), &device).unwrap();
@ -119,7 +121,7 @@ fn run_reduce<T: candle_core::FloatDType>(c: &mut Criterion, device: &Device, (l
_ => "reduce",
};
let mut group = c.benchmark_group(bench_name(name));
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {
@ -140,8 +142,8 @@ fn run_arg_reduce<T: candle_core::FloatDType>(
(lo, up): (T, T),
) {
let b = 1;
let m = 2048;
let k = 2048;
let m = 1024;
let k = 1024;
let a = Tensor::rand(lo, up, (b, m, k), &device).unwrap();
@ -154,7 +156,7 @@ fn run_arg_reduce<T: candle_core::FloatDType>(
_ => "reduce",
};
let mut group = c.benchmark_group(bench_name(name));
let mut group = c.benchmark_group(device.bench_name(name));
group.throughput(Throughput::Bytes(flops as u64));
group.bench_function("iter", move |b| {
b.iter_custom(|iters| {