Improve the handling of matmul with squeezed layouts. (#1998)

* Improve the handling of matmul with squeezed layouts.

* Fix for the cuda backend.

* Revert the temporary fix.
This commit is contained in:
Laurent Mazare
2024-04-02 23:17:05 +02:00
committed by GitHub
parent d17b2cdad9
commit 08c049def3
5 changed files with 151 additions and 139 deletions

View File

@ -1204,6 +1204,30 @@ impl MatMul {
}))
.bt()
}
fn ab_skip(&self, lhs_l: &Layout, rhs_l: &Layout) -> Result<(usize, usize)> {
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let (_b, m, n, k) = self.0;
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[_, stride] if lhs_l.dims()[0] == 1 => stride,
[stride, _] if lhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[_, stride] if rhs_l.dims()[0] == 1 => stride,
[stride, _] if rhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
Ok((a_skip, b_skip))
}
}
impl Map2 for MatMul {
@ -1237,18 +1261,7 @@ impl Map2 for MatMul {
let rhs_cs = rhs_stride[rank - 1];
let rhs_rs = rhs_stride[rank - 2];
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let c_skip: usize = m * n;
let dst_shape: Shape = (m, n).into();
@ -1308,20 +1321,8 @@ impl Map2 for MatMul {
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let c_skip: usize = m * n;
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];
@ -1411,20 +1412,8 @@ impl Map2 for MatMul {
let lhs_stride = lhs_l.stride();
let rhs_stride = rhs_l.stride();
let rank = lhs_stride.len();
let a_skip: usize = match lhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[stride] => stride,
[] => m * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous lhs"))?,
};
let b_skip: usize = match rhs_stride[..rank - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[stride] => stride,
[] => n * k,
_ => Err(self.striding_error(lhs_l, rhs_l, "non-contiguous rhs"))?,
};
let (a_skip, b_skip) = self.ab_skip(lhs_l, rhs_l)?;
let c_skip: usize = m * n;
let rhs_m1 = rhs_stride[rhs_stride.len() - 1];

View File

@ -1174,6 +1174,8 @@ fn gemm_config<T>(
let stride_b: usize = match lhs_stride[..lhs_stride.len() - 2] {
[s1, stride] if s1 == stride * lhs_l.dims()[1] => stride,
[_, stride] if lhs_l.dims()[0] == 1 => stride,
[stride, _] if lhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => m * k,
_ => Err(CudaError::MatMulNonContiguous {
@ -1184,6 +1186,8 @@ fn gemm_config<T>(
};
let stride_a: usize = match rhs_stride[..rhs_stride.len() - 2] {
[s1, stride] if s1 == stride * rhs_l.dims()[1] => stride,
[_, stride] if rhs_l.dims()[0] == 1 => stride,
[stride, _] if rhs_l.dims()[1] == 1 => stride,
[stride] => stride,
[] => n * k,
_ => Err(CudaError::MatMulNonContiguous {

View File

@ -0,0 +1,119 @@
use candle_core::{test_device, DType, Device, IndexOp, Result, Tensor};
fn matmul(device: &Device) -> Result<()> {
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let a = Tensor::from_slice(&data, (2, 2), device)?;
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let b = Tensor::from_slice(&data, (2, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
let data = vec![1.0f32, 2.0];
let a = Tensor::from_slice(&data, (2, 1), device)?;
let data = vec![3.0f32, 4.0];
let b = Tensor::from_slice(&data, (1, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 3), device)?;
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (3, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
let c = a.matmul(&b)?;
assert_eq!(c.to_vec3::<f32>()?, &expected);
// Also perform the matmul on contiguous transposed versions.
let a_tt = a.t()?.contiguous()?.t()?;
assert!(!a_tt.is_contiguous());
assert_eq!(a.dims(), a_tt.dims());
assert_eq!(a_tt.stride(), &[6, 1, 2]);
let b_tt = b.t()?.contiguous()?.t()?;
assert!(!b_tt.is_contiguous());
assert_eq!(b.dims(), b_tt.dims());
assert_eq!(b_tt.stride(), &[6, 1, 3]);
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
Ok(())
}
fn broadcast_matmul(device: &Device) -> Result<()> {
let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?;
let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?;
let out = lhs.broadcast_matmul(&rhs)?;
assert_eq!(out.dims(), &[3, 6, 4, 2]);
for idx1 in 0..3 {
for idx2 in 0..6 {
let out = out.i((idx1, idx2))?;
let lhs = lhs.i((idx1, 0))?;
let rhs = rhs.i(idx2)?;
let out2 = lhs.matmul(&rhs);
let sum_diff2 = (out - out2)?.sqr()?.sum_all()?;
// With cuda, we see errors of up to ~1e-12.
assert!(sum_diff2.to_vec0::<f32>()? < 1e-6)
}
}
Ok(())
}
// https://github.com/huggingface/candle/issues/1948
fn squeeze_mm(device: &Device) -> Result<()> {
let seq_len = 8_usize;
let a = Tensor::zeros((1, seq_len, 16), DType::F32, device)?;
let x = a.i((.., seq_len - 1, ..))?;
println!(
"x shape:{:?}, stride:{:?}, is_contiguous:{}",
x.shape(),
x.stride(),
x.is_contiguous()
);
let w = Tensor::zeros((32, 16), DType::F32, device)?.t()?;
println!(
"w shape:{:?}, stride:{:?}, is_contiguous:{}",
w.shape(),
w.stride(),
w.is_contiguous()
);
let x = x.matmul(&w)?;
assert_eq!(x.dims(), &[1, 32]);
Ok(())
}
// https://github.com/huggingface/candle/issues/1992
fn mm_layout(device: &Device) -> Result<()> {
let a = Tensor::arange(0f32, 16f32, device)?.reshape((1, 1, 4, 4))?;
let b = Tensor::arange(0f32, 8f32, device)?.reshape((1, 1, 4, 2))?;
let mm1 = a.matmul(&b)?;
// Forces the layout to be:
// shape: [1, 1, 4, 2], stride: [8, 2, 2, 1], start_offset: 0
// This is still a contiguous matrix but matmul checks are only the two last dimensions have
// non 1 sizes but matmul check may be reluctant to handle it.
let b = b.transpose(1, 2)?.force_contiguous()?.transpose(1, 2)?;
let mm2 = a.matmul(&b)?;
let diff = (mm1 - mm2)?.abs()?.sum_all()?.to_vec0::<f32>()?;
assert_eq!(diff, 0.);
Ok(())
}
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
test_device!(
broadcast_matmul,
broadcast_matmul_cpu,
broadcast_matmul_gpu,
broadcast_matmul_metal
);
test_device!(squeeze_mm, squeeze_mm_cpu, squeeze_mm_gpu, squeeze_mm_metal);
test_device!(mm_layout, mm_layout_cpu, mm_layout_gpu, mm_layout_metal);

View File

@ -938,74 +938,6 @@ fn gather(device: &Device) -> Result<()> {
Ok(())
}
fn matmul(device: &Device) -> Result<()> {
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let a = Tensor::from_slice(&data, (2, 2), device)?;
let data = vec![1.0f32, 2.0, 3.0, 4.0];
let b = Tensor::from_slice(&data, (2, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[[7.0f32, 10.0], [15.0, 22.0]]);
let data = vec![1.0f32, 2.0];
let a = Tensor::from_slice(&data, (2, 1), device)?;
let data = vec![3.0f32, 4.0];
let b = Tensor::from_slice(&data, (1, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[3.0, 4.0], &[6.0, 8.0]]);
let data: Vec<_> = (0..6).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 3), device)?;
let data: Vec<_> = (0..6).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (3, 2), device)?;
let c = a.matmul(&b)?;
assert_eq!(c.to_vec2::<f32>()?, &[&[16., 19.], &[52., 64.]]);
let data: Vec<_> = (0..12).map(|i| i as f32).collect();
let a = Tensor::from_slice(&data, (2, 2, 3), device)?;
let data: Vec<_> = (0..12).map(|i| (i + 2) as f32).collect();
let b = Tensor::from_slice(&data, (2, 3, 2), device)?;
let expected = [[[16., 19.], [52., 64.]], [[214., 235.], [304., 334.]]];
let c = a.matmul(&b)?;
assert_eq!(c.to_vec3::<f32>()?, &expected);
// Also perform the matmul on contiguous transposed versions.
let a_tt = a.t()?.contiguous()?.t()?;
assert!(!a_tt.is_contiguous());
assert_eq!(a.dims(), a_tt.dims());
assert_eq!(a_tt.stride(), &[6, 1, 2]);
let b_tt = b.t()?.contiguous()?.t()?;
assert!(!b_tt.is_contiguous());
assert_eq!(b.dims(), b_tt.dims());
assert_eq!(b_tt.stride(), &[6, 1, 3]);
assert_eq!(a_tt.matmul(&b)?.to_vec3::<f32>()?, &expected);
assert_eq!(a.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
assert_eq!(a_tt.matmul(&b_tt)?.to_vec3::<f32>()?, &expected);
Ok(())
}
fn broadcast_matmul(device: &Device) -> Result<()> {
let lhs = Tensor::randn(0f32, 1f32, (3, 1, 4, 5), device)?;
let rhs = Tensor::randn(0f32, 1f32, (6, 5, 2), device)?;
let out = lhs.broadcast_matmul(&rhs)?;
assert_eq!(out.dims(), &[3, 6, 4, 2]);
for idx1 in 0..3 {
for idx2 in 0..6 {
let out = out.i((idx1, idx2))?;
let lhs = lhs.i((idx1, 0))?;
let rhs = rhs.i(idx2)?;
let out2 = lhs.matmul(&rhs);
let sum_diff2 = (out - out2)?.sqr()?.sum_all()?;
// With cuda, we see errors of up to ~1e-12.
assert!(sum_diff2.to_vec0::<f32>()? < 1e-6)
}
}
Ok(())
}
fn broadcasting(device: &Device) -> Result<()> {
let t1 = Tensor::arange(0f32, 24f32, device)?.reshape((4, 2, 3))?;
let t2 = Tensor::new(&[100f32, 200f32], device)?;
@ -1140,30 +1072,6 @@ fn randn(device: &Device) -> Result<()> {
Ok(())
}
// https://github.com/huggingface/candle/issues/1948
fn squeeze_mm(device: &Device) -> Result<()> {
let seq_len = 8_usize;
let a = Tensor::zeros((1, seq_len, 16), DType::F32, device)?;
let x = a.i((.., seq_len - 1, ..))?;
println!(
"x shape:{:?}, stride:{:?}, is_contiguous:{}",
x.shape(),
x.stride(),
x.is_contiguous()
);
let w = Tensor::zeros((32, 16), DType::F32, device)?.t()?;
println!(
"w shape:{:?}, stride:{:?}, is_contiguous:{}",
w.shape(),
w.stride(),
w.is_contiguous()
);
let x = x.matmul(&w)?;
assert_eq!(x.dims(), &[1, 32]);
Ok(())
}
test_device!(zeros, zeros_cpu, zeros_gpu, zeros_metal);
test_device!(ones, ones_cpu, ones_gpu, ones_metal);
test_device!(full, full_cpu, full_gpu, full_metal);
@ -1183,13 +1091,6 @@ test_device!(unary_op, unary_op_cpu, unary_op_gpu, unary_op_metal);
test_device!(binary_op, binary_op_cpu, binary_op_gpu, binary_op_metal);
test_device!(embeddings, embeddings_cpu, embeddings_gpu, embeddings_metal);
test_device!(cmp, cmp_cpu, cmp_gpu, cmp_metal);
test_device!(matmul, matmul_cpu, matmul_gpu, matmul_metal);
test_device!(
broadcast_matmul,
broadcast_matmul_cpu,
broadcast_matmul_gpu,
broadcast_matmul_metal
);
test_device!(
broadcasting,
broadcasting_cpu,
@ -1219,7 +1120,6 @@ test_device!(
test_device!(randn, randn_cpu, randn_gpu, randn_metal);
test_device!(clamp, clamp_cpu, clamp_gpu, clamp_metal);
test_device!(var, var_cpu, var_gpu, var_metal);
test_device!(squeeze_mm, squeeze_mm_cpu, squeeze_mm_gpu, squeeze_mm_metal);
// There was originally a bug on the CPU implementation for randn
// https://github.com/huggingface/candle/issues/381