mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 11:37:11 +00:00
Add the AdamW optimizer. (#307)
* Add the AdamW optimizer. * Add some AdamW test validated against PyTorch.
This commit is contained in:
@ -1,6 +1,9 @@
|
||||
//! Various optimization algorithms.
|
||||
use candle::{Result, Tensor, Var};
|
||||
|
||||
/// Optimizer for Stochastic Gradient Descent.
|
||||
///
|
||||
/// Contrary to the PyTorch implementation of SGD, this version does not support momentum.
|
||||
#[derive(Debug)]
|
||||
pub struct SGD {
|
||||
vars: Vec<Var>,
|
||||
@ -42,8 +45,7 @@ impl SGD {
|
||||
self.vars.push(var.clone())
|
||||
}
|
||||
|
||||
pub fn backward_step(&self, loss: &Tensor) -> Result<()> {
|
||||
let grads = loss.backward()?;
|
||||
pub fn step(&self, grads: &candle::backprop::GradStore) -> Result<()> {
|
||||
for var in self.vars.iter() {
|
||||
if let Some(grad) = grads.get(var) {
|
||||
var.set(&var.sub(&(grad * self.learning_rate)?)?)?;
|
||||
@ -51,4 +53,114 @@ impl SGD {
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn backward_step(&self, loss: &Tensor) -> Result<()> {
|
||||
let grads = loss.backward()?;
|
||||
self.step(&grads)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct ParamsAdamW {
|
||||
pub lr: f64,
|
||||
pub beta1: f64,
|
||||
pub beta2: f64,
|
||||
pub eps: f64,
|
||||
pub weight_decay: f64,
|
||||
}
|
||||
|
||||
impl Default for ParamsAdamW {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
lr: 0.001,
|
||||
beta1: 0.9,
|
||||
beta2: 0.999,
|
||||
eps: 1e-8,
|
||||
weight_decay: 0.01,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct VarAdamW {
|
||||
var: Var,
|
||||
first_moment: Var,
|
||||
second_moment: Var,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct AdamW {
|
||||
vars: Vec<VarAdamW>,
|
||||
step_t: usize,
|
||||
params: ParamsAdamW,
|
||||
}
|
||||
|
||||
impl AdamW {
|
||||
pub fn new(vars: Vec<Var>, params: ParamsAdamW) -> Result<Self> {
|
||||
let vars = vars
|
||||
.into_iter()
|
||||
.map(|var| {
|
||||
let dtype = var.dtype();
|
||||
let shape = var.shape();
|
||||
let device = var.device();
|
||||
let first_moment = Var::zeros(shape, dtype, device)?;
|
||||
let second_moment = Var::zeros(shape, dtype, device)?;
|
||||
Ok(VarAdamW {
|
||||
var,
|
||||
first_moment,
|
||||
second_moment,
|
||||
})
|
||||
})
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Ok(Self {
|
||||
vars,
|
||||
params,
|
||||
step_t: 0,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn new_lr(vars: Vec<Var>, learning_rate: f64) -> Result<Self> {
|
||||
let params = ParamsAdamW {
|
||||
lr: learning_rate,
|
||||
..ParamsAdamW::default()
|
||||
};
|
||||
Self::new(vars, params)
|
||||
}
|
||||
|
||||
pub fn step(&mut self, grads: &candle::backprop::GradStore) -> Result<()> {
|
||||
self.step_t += 1;
|
||||
let lr = self.params.lr;
|
||||
let lambda = self.params.weight_decay;
|
||||
let lr_lambda = lr * lambda;
|
||||
let beta1 = self.params.beta1;
|
||||
let beta2 = self.params.beta2;
|
||||
let scale_m = 1f64 / (1f64 - beta1.powi(self.step_t as i32));
|
||||
let scale_v = 1f64 / (1f64 - beta2.powi(self.step_t as i32));
|
||||
for var in self.vars.iter() {
|
||||
let theta = &var.var;
|
||||
let m = &var.first_moment;
|
||||
let v = &var.second_moment;
|
||||
if let Some(g) = grads.get(theta) {
|
||||
// This involves locking 3 RWLocks per params, if the parameters are large this
|
||||
// should not be an issue but this may be problematic with models with lots of
|
||||
// small parameters.
|
||||
let next_m = ((m.as_tensor() * beta1)? + (g * (1.0 - beta1))?)?;
|
||||
let next_v = ((v.as_tensor() * beta2)? + (g.sqr()? * (1.0 - beta2))?)?;
|
||||
let m_hat = (&next_m * scale_m)?;
|
||||
let v_hat = (&next_v * scale_v)?;
|
||||
let next_theta = (theta.as_tensor() * (1f64 - lr_lambda))?;
|
||||
let adjusted_grad = (m_hat / (v_hat.sqrt()? + self.params.eps)?)?;
|
||||
let next_theta = (next_theta - (adjusted_grad * lr)?)?;
|
||||
m.set(&next_m)?;
|
||||
v.set(&next_v)?;
|
||||
theta.set(&next_theta)?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub fn backward_step(&mut self, loss: &Tensor) -> Result<()> {
|
||||
let grads = loss.backward()?;
|
||||
self.step(&grads)
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user