Add the AdamW optimizer. (#307)

* Add the AdamW optimizer.

* Add some AdamW test validated against PyTorch.
This commit is contained in:
Laurent Mazare
2023-08-02 14:03:49 +01:00
committed by GitHub
parent e2acbe1e72
commit 0902846f25
6 changed files with 216 additions and 19 deletions

View File

@ -34,7 +34,7 @@
//! Rust is cool, and a lot of the HF ecosystem already has Rust crates [safetensors](https://github.com/huggingface/safetensors) and [tokenizers](https://github.com/huggingface/tokenizers)
pub mod backend;
mod backprop;
pub mod backprop;
mod conv;
mod convert;
pub mod cpu_backend;

View File

@ -19,5 +19,5 @@ pub use embedding::{embedding, Embedding};
pub use init::Init;
pub use layer_norm::{layer_norm, LayerNorm};
pub use linear::{linear, linear_no_bias, Linear};
pub use optim::SGD;
pub use optim::{AdamW, ParamsAdamW, SGD};
pub use var_builder::{VarBuilder, VarMap};

View File

@ -1,6 +1,9 @@
//! Various optimization algorithms.
use candle::{Result, Tensor, Var};
/// Optimizer for Stochastic Gradient Descent.
///
/// Contrary to the PyTorch implementation of SGD, this version does not support momentum.
#[derive(Debug)]
pub struct SGD {
vars: Vec<Var>,
@ -42,8 +45,7 @@ impl SGD {
self.vars.push(var.clone())
}
pub fn backward_step(&self, loss: &Tensor) -> Result<()> {
let grads = loss.backward()?;
pub fn step(&self, grads: &candle::backprop::GradStore) -> Result<()> {
for var in self.vars.iter() {
if let Some(grad) = grads.get(var) {
var.set(&var.sub(&(grad * self.learning_rate)?)?)?;
@ -51,4 +53,114 @@ impl SGD {
}
Ok(())
}
pub fn backward_step(&self, loss: &Tensor) -> Result<()> {
let grads = loss.backward()?;
self.step(&grads)
}
}
#[derive(Clone, Debug)]
pub struct ParamsAdamW {
pub lr: f64,
pub beta1: f64,
pub beta2: f64,
pub eps: f64,
pub weight_decay: f64,
}
impl Default for ParamsAdamW {
fn default() -> Self {
Self {
lr: 0.001,
beta1: 0.9,
beta2: 0.999,
eps: 1e-8,
weight_decay: 0.01,
}
}
}
#[derive(Debug)]
struct VarAdamW {
var: Var,
first_moment: Var,
second_moment: Var,
}
#[derive(Debug)]
pub struct AdamW {
vars: Vec<VarAdamW>,
step_t: usize,
params: ParamsAdamW,
}
impl AdamW {
pub fn new(vars: Vec<Var>, params: ParamsAdamW) -> Result<Self> {
let vars = vars
.into_iter()
.map(|var| {
let dtype = var.dtype();
let shape = var.shape();
let device = var.device();
let first_moment = Var::zeros(shape, dtype, device)?;
let second_moment = Var::zeros(shape, dtype, device)?;
Ok(VarAdamW {
var,
first_moment,
second_moment,
})
})
.collect::<Result<Vec<_>>>()?;
Ok(Self {
vars,
params,
step_t: 0,
})
}
pub fn new_lr(vars: Vec<Var>, learning_rate: f64) -> Result<Self> {
let params = ParamsAdamW {
lr: learning_rate,
..ParamsAdamW::default()
};
Self::new(vars, params)
}
pub fn step(&mut self, grads: &candle::backprop::GradStore) -> Result<()> {
self.step_t += 1;
let lr = self.params.lr;
let lambda = self.params.weight_decay;
let lr_lambda = lr * lambda;
let beta1 = self.params.beta1;
let beta2 = self.params.beta2;
let scale_m = 1f64 / (1f64 - beta1.powi(self.step_t as i32));
let scale_v = 1f64 / (1f64 - beta2.powi(self.step_t as i32));
for var in self.vars.iter() {
let theta = &var.var;
let m = &var.first_moment;
let v = &var.second_moment;
if let Some(g) = grads.get(theta) {
// This involves locking 3 RWLocks per params, if the parameters are large this
// should not be an issue but this may be problematic with models with lots of
// small parameters.
let next_m = ((m.as_tensor() * beta1)? + (g * (1.0 - beta1))?)?;
let next_v = ((v.as_tensor() * beta2)? + (g.sqr()? * (1.0 - beta2))?)?;
let m_hat = (&next_m * scale_m)?;
let v_hat = (&next_v * scale_v)?;
let next_theta = (theta.as_tensor() * (1f64 - lr_lambda))?;
let adjusted_grad = (m_hat / (v_hat.sqrt()? + self.params.eps)?)?;
let next_theta = (next_theta - (adjusted_grad * lr)?)?;
m.set(&next_m)?;
v.set(&next_v)?;
theta.set(&next_theta)?;
}
}
Ok(())
}
pub fn backward_step(&mut self, loss: &Tensor) -> Result<()> {
let grads = loss.backward()?;
self.step(&grads)
}
}

View File

@ -1,18 +1,10 @@
use candle::{Device, Result, Tensor};
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
pub fn to_vec3_round(t: Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> {
let b = 10f32.powi(digits);
let t = t.to_vec3::<f32>()?;
let t = t
.iter()
.map(|t| {
t.iter()
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
.collect()
})
.collect();
Ok(t)
}
mod test_utils;
use test_utils::to_vec3_round;
use candle::{Device, Result, Tensor};
#[test]
fn softmax() -> Result<()> {

View File

@ -1,9 +1,12 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
mod test_utils;
use test_utils::{to_vec0_round, to_vec2_round};
use anyhow::Result;
use candle::{Device, Tensor, Var};
use candle_nn::{Linear, SGD};
use candle_nn::{AdamW, Linear, ParamsAdamW, SGD};
#[test]
fn sgd_optim() -> Result<()> {
@ -65,3 +68,54 @@ fn sgd_linear_regression() -> Result<()> {
assert_eq!(b.to_scalar::<f32>()?, -1.9796902);
Ok(())
}
/* The following test returns the same values as the PyTorch code below.
import torch
from torch import optim
w_gen = torch.tensor([[3., 1.]])
b_gen = torch.tensor([-2.])
sample_xs = torch.tensor([[2., 1.], [7., 4.], [-4., 12.], [5., 8.]])
sample_ys = sample_xs.matmul(w_gen.t()) + b_gen
m = torch.nn.Linear(2, 1)
with torch.no_grad():
m.weight.zero_()
m.bias.zero_()
optimizer = optim.AdamW(m.parameters(), lr=0.1)
for _step in range(100):
optimizer.zero_grad()
ys = m(sample_xs)
loss = ((ys - sample_ys)**2).sum()
loss.backward()
optimizer.step()
print(m.weight)
print(m.bias)
*/
#[test]
fn adamw_linear_regression() -> Result<()> {
let w_gen = Tensor::new(&[[3f32, 1.]], &Device::Cpu)?;
let b_gen = Tensor::new(-2f32, &Device::Cpu)?;
let gen = Linear::new(w_gen, Some(b_gen));
let sample_xs = Tensor::new(&[[2f32, 1.], [7., 4.], [-4., 12.], [5., 8.]], &Device::Cpu)?;
let sample_ys = gen.forward(&sample_xs)?;
// Now use backprop to run a linear regression between samples and get the coefficients back.
let w = Var::new(&[[0f32, 0.]], &Device::Cpu)?;
let b = Var::new(0f32, &Device::Cpu)?;
let params = ParamsAdamW {
lr: 0.1,
..Default::default()
};
let mut opt = AdamW::new(vec![w.clone(), b.clone()], params)?;
let lin = Linear::new(w.as_tensor().clone(), Some(b.as_tensor().clone()));
for _step in 0..100 {
let ys = lin.forward(&sample_xs)?;
let loss = ys.sub(&sample_ys)?.sqr()?.sum_all()?;
opt.backward_step(&loss)?;
}
assert_eq!(to_vec2_round(w.as_tensor(), 4)?, &[[2.7257, 0.7097]]);
assert_eq!(to_vec0_round(b.as_tensor(), 4)?, 0.7873);
Ok(())
}

View File

@ -0,0 +1,39 @@
#![allow(dead_code)]
use candle::{Result, Tensor};
pub fn to_vec0_round(t: &Tensor, digits: i32) -> Result<f32> {
let b = 10f32.powi(digits);
let t = t.to_vec0::<f32>()?;
Ok(f32::round(t * b) / b)
}
pub fn to_vec1_round(t: &Tensor, digits: i32) -> Result<Vec<f32>> {
let b = 10f32.powi(digits);
let t = t.to_vec1::<f32>()?;
let t = t.iter().map(|t| f32::round(t * b) / b).collect();
Ok(t)
}
pub fn to_vec2_round(t: &Tensor, digits: i32) -> Result<Vec<Vec<f32>>> {
let b = 10f32.powi(digits);
let t = t.to_vec2::<f32>()?;
let t = t
.iter()
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
.collect();
Ok(t)
}
pub fn to_vec3_round(t: Tensor, digits: i32) -> Result<Vec<Vec<Vec<f32>>>> {
let b = 10f32.powi(digits);
let t = t.to_vec3::<f32>()?;
let t = t
.iter()
.map(|t| {
t.iter()
.map(|t| t.iter().map(|t| f32::round(t * b) / b).collect())
.collect()
})
.collect();
Ok(t)
}