mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 02:38:10 +00:00
Encodec model. (#1771)
* Encodec model. * Fixes. * Add the padding functions. * Get the LSTM bit to work. * Get the encodec model to generate some tokens (decoder only for now). * Minor tweak. * Minor tweak.
This commit is contained in:
718
candle-transformers/src/models/encodec.rs
Normal file
718
candle-transformers/src/models/encodec.rs
Normal file
@ -0,0 +1,718 @@
|
||||
#![allow(unused)]
|
||||
use candle::{DType, IndexOp, Layout, Module, Result, Shape, Tensor, D};
|
||||
use candle_nn::{conv1d, Conv1d, Conv1dConfig, ConvTranspose1d, VarBuilder};
|
||||
|
||||
// Encodec Model
|
||||
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, serde::Deserialize)]
|
||||
pub enum NormType {
|
||||
WeightNorm,
|
||||
TimeGroupNorm,
|
||||
None,
|
||||
}
|
||||
|
||||
#[derive(Debug, Copy, Clone, PartialEq, Eq, serde::Deserialize)]
|
||||
pub enum PadMode {
|
||||
Constant,
|
||||
Reflect,
|
||||
Replicate,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
|
||||
pub struct Config {
|
||||
pub target_bandwidths: Vec<f64>,
|
||||
pub sampling_rate: usize,
|
||||
pub audio_channels: usize,
|
||||
pub normalize: bool,
|
||||
pub chunk_length_s: Option<usize>,
|
||||
pub overlap: Option<usize>,
|
||||
pub hidden_size: usize,
|
||||
pub num_filters: usize,
|
||||
pub num_residual_layers: usize,
|
||||
pub upsampling_ratios: Vec<usize>,
|
||||
pub norm_type: NormType,
|
||||
pub kernel_size: usize,
|
||||
pub last_kernel_size: usize,
|
||||
pub residual_kernel_size: usize,
|
||||
pub dilation_growth_rate: usize,
|
||||
pub use_causal_conv: bool,
|
||||
pub pad_mode: PadMode,
|
||||
pub compress: usize,
|
||||
pub num_lstm_layers: usize,
|
||||
pub trim_right_ratio: f64,
|
||||
pub codebook_size: usize,
|
||||
pub codebook_dim: Option<usize>,
|
||||
pub use_conv_shortcut: bool,
|
||||
}
|
||||
|
||||
impl Default for Config {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
target_bandwidths: vec![1.5, 3.0, 6.0, 12.0, 24.0],
|
||||
sampling_rate: 24_000,
|
||||
audio_channels: 1,
|
||||
normalize: false,
|
||||
chunk_length_s: None,
|
||||
overlap: None,
|
||||
hidden_size: 128,
|
||||
num_filters: 32,
|
||||
num_residual_layers: 1,
|
||||
upsampling_ratios: vec![8, 5, 4, 2],
|
||||
norm_type: NormType::WeightNorm,
|
||||
kernel_size: 7,
|
||||
last_kernel_size: 7,
|
||||
residual_kernel_size: 3,
|
||||
dilation_growth_rate: 2,
|
||||
use_causal_conv: true,
|
||||
// This should be PadMode::Reflect which is currently unsupported in candle.
|
||||
pad_mode: PadMode::Replicate,
|
||||
compress: 2,
|
||||
num_lstm_layers: 2,
|
||||
trim_right_ratio: 1.0,
|
||||
codebook_size: 1024,
|
||||
codebook_dim: None,
|
||||
use_conv_shortcut: true,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Config {
|
||||
fn codebook_dim(&self) -> usize {
|
||||
self.codebook_dim.unwrap_or(self.hidden_size)
|
||||
}
|
||||
|
||||
fn frame_rate(&self) -> usize {
|
||||
let hop_length: usize = self.upsampling_ratios.iter().product();
|
||||
(self.sampling_rate + hop_length - 1) / hop_length
|
||||
}
|
||||
|
||||
fn num_quantizers(&self) -> usize {
|
||||
let num = 1000f64
|
||||
* self
|
||||
.target_bandwidths
|
||||
.last()
|
||||
.expect("empty target_bandwidths");
|
||||
(num as usize) / (self.frame_rate() * 10)
|
||||
}
|
||||
}
|
||||
|
||||
fn get_extra_padding_for_conv1d(
|
||||
xs: &Tensor,
|
||||
k_size: usize,
|
||||
stride: usize,
|
||||
padding_total: usize,
|
||||
) -> Result<usize> {
|
||||
let len = xs.dim(D::Minus1)?;
|
||||
let n_frames = (len + padding_total).saturating_sub(k_size) as f64 / stride as f64 + 1.0;
|
||||
let ideal_len =
|
||||
((n_frames.ceil() as usize - 1) * stride + k_size).saturating_sub(padding_total);
|
||||
Ok(ideal_len.saturating_sub(len))
|
||||
}
|
||||
|
||||
fn pad1d(xs: &Tensor, pad_l: usize, pad_r: usize, mode: PadMode) -> Result<Tensor> {
|
||||
match mode {
|
||||
PadMode::Constant => xs.pad_with_zeros(D::Minus1, pad_l, pad_r),
|
||||
PadMode::Reflect => candle::bail!("pad-mode 'reflect' is not supported"),
|
||||
PadMode::Replicate => xs.pad_with_same(D::Minus1, pad_l, pad_r),
|
||||
}
|
||||
}
|
||||
|
||||
// Applies weight norm for inference by recomputing the weight tensor. This
|
||||
// does not apply to training.
|
||||
// https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
|
||||
pub fn conv1d_weight_norm(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
config: candle_nn::Conv1dConfig,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Conv1d> {
|
||||
let weight_g = vb.get((out_c, 1, 1), "weight_g")?;
|
||||
let weight_v = vb.get((out_c, in_c, kernel_size), "weight_v")?;
|
||||
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
|
||||
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
||||
let bias = vb.get(out_c, "bias")?;
|
||||
Ok(Conv1d::new(weight, Some(bias), config))
|
||||
}
|
||||
|
||||
fn conv_transpose1d_weight_norm(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
bias: bool,
|
||||
config: candle_nn::ConvTranspose1dConfig,
|
||||
vb: VarBuilder,
|
||||
) -> Result<ConvTranspose1d> {
|
||||
let weight_g = vb.get((in_c, 1, 1), "weight_g")?;
|
||||
let weight_v = vb.get((in_c, out_c, kernel_size), "weight_v")?;
|
||||
let norm_v = weight_v.sqr()?.sum_keepdim((1, 2))?.sqrt()?;
|
||||
let weight = weight_v.broadcast_mul(&weight_g)?.broadcast_div(&norm_v)?;
|
||||
let bias = if bias {
|
||||
Some(vb.get(out_c, "bias")?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
Ok(ConvTranspose1d::new(weight, bias, config))
|
||||
}
|
||||
|
||||
struct CodebookEncode;
|
||||
|
||||
impl candle::CustomOp2 for CodebookEncode {
|
||||
fn name(&self) -> &'static str {
|
||||
"cb"
|
||||
}
|
||||
|
||||
fn cpu_fwd(
|
||||
&self,
|
||||
lhs_storage: &candle::CpuStorage,
|
||||
lhs_layout: &Layout,
|
||||
rhs_storage: &candle::CpuStorage,
|
||||
rhs_layout: &Layout,
|
||||
) -> Result<(candle::CpuStorage, Shape)> {
|
||||
use rayon::prelude::*;
|
||||
|
||||
let (lhs_dim1, lhs_dim2) = lhs_layout.shape().dims2()?;
|
||||
let (rhs_dim1, rhs_dim2) = rhs_layout.shape().dims2()?;
|
||||
if lhs_dim2 != rhs_dim2 {
|
||||
candle::bail!("CodebookEncode, mismatch on last dim, {lhs_layout:?} {rhs_layout:?}");
|
||||
}
|
||||
if lhs_dim2 == 0 {
|
||||
candle::bail!("CodebookEncode, empty last dim {lhs_layout:?}")
|
||||
}
|
||||
let lhs = match lhs_layout.contiguous_offsets() {
|
||||
None => candle::bail!("CodebookEncode, lhs has to be contiguous, got {lhs_layout:?}"),
|
||||
Some((o1, o2)) => {
|
||||
let slice = lhs_storage.as_slice::<f32>()?;
|
||||
&slice[o1..o2]
|
||||
}
|
||||
};
|
||||
let rhs = match rhs_layout.contiguous_offsets() {
|
||||
None => candle::bail!("CodebookEncode, rhs has to be contiguous, got {rhs_layout:?}"),
|
||||
Some((o1, o2)) => {
|
||||
let slice = rhs_storage.as_slice::<f32>()?;
|
||||
&slice[o1..o2]
|
||||
}
|
||||
};
|
||||
let dst = (0..lhs_dim1)
|
||||
.into_par_iter()
|
||||
.map(|idx1| {
|
||||
let mut where_min = 0;
|
||||
let mut min_dist = f32::INFINITY;
|
||||
let lhs = &lhs[idx1 * lhs_dim2..(idx1 + 1) * lhs_dim2];
|
||||
for idx2 in 0..rhs_dim1 {
|
||||
let rhs = &rhs[idx2 * rhs_dim2..(idx2 + 1) * rhs_dim2];
|
||||
let mut dist = 0f32;
|
||||
for (a, b) in lhs.iter().zip(rhs.iter()) {
|
||||
dist += (a - b) * (a - b)
|
||||
}
|
||||
if dist < min_dist {
|
||||
min_dist = dist;
|
||||
where_min = idx2;
|
||||
}
|
||||
}
|
||||
where_min as u32
|
||||
})
|
||||
.collect();
|
||||
let storage = candle::WithDType::to_cpu_storage_owned(dst);
|
||||
Ok((storage, (lhs_dim1,).into()))
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L340
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct EuclideanCodebook {
|
||||
inited: Tensor,
|
||||
cluster_size: Tensor,
|
||||
embed: candle_nn::Embedding,
|
||||
embed_avg: Tensor,
|
||||
}
|
||||
|
||||
impl EuclideanCodebook {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let inited = vb.get(1, "inited")?;
|
||||
let cluster_size = vb.get(cfg.codebook_size, "cluster_size")?;
|
||||
let e_shape = (cfg.codebook_size, cfg.codebook_dim());
|
||||
let embed = vb.get(e_shape, "embed")?;
|
||||
let embed_avg = vb.get(e_shape, "embed_avg")?;
|
||||
Ok(Self {
|
||||
inited,
|
||||
cluster_size,
|
||||
embed: candle_nn::Embedding::new(embed, cfg.codebook_dim()),
|
||||
embed_avg,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
|
||||
let quantize = self.embed.forward(embed_ind)?;
|
||||
Ok(quantize)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct VectorQuantization {
|
||||
codebook: EuclideanCodebook,
|
||||
}
|
||||
|
||||
impl VectorQuantization {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let codebook = EuclideanCodebook::new(cfg, vb.pp("codebook"))?;
|
||||
Ok(Self { codebook })
|
||||
}
|
||||
|
||||
pub fn decode(&self, embed_ind: &Tensor) -> Result<Tensor> {
|
||||
let quantize = self.codebook.decode(embed_ind)?;
|
||||
let quantize = quantize.transpose(1, 2)?;
|
||||
Ok(quantize)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct ResidualVectorQuantizer {
|
||||
layers: Vec<VectorQuantization>,
|
||||
}
|
||||
|
||||
impl ResidualVectorQuantizer {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let vb = &vb.pp("layers");
|
||||
let layers = (0..cfg.num_quantizers())
|
||||
.map(|i| VectorQuantization::new(cfg, vb.pp(i)))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
Ok(Self { layers })
|
||||
}
|
||||
|
||||
pub fn decode(&self, codes: &Tensor) -> Result<Tensor> {
|
||||
let mut quantized_out = Tensor::zeros((), DType::F32, codes.device())?;
|
||||
let ncodes = codes.dim(0)?;
|
||||
if ncodes > self.layers.len() {
|
||||
candle::bail!(
|
||||
"codes shape {:?} does not match the number of quantization layers {}",
|
||||
codes.shape(),
|
||||
self.layers.len()
|
||||
)
|
||||
}
|
||||
for (i, layer) in self.layers.iter().take(ncodes).enumerate() {
|
||||
let quantized = layer.decode(&codes.i(i)?)?;
|
||||
quantized_out = quantized.broadcast_add(&quantized_out)?;
|
||||
}
|
||||
Ok(quantized_out)
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/huggingface/transformers/blob/abaca9f9432a84cfaa95531de4c72334f38a42f2/src/transformers/models/encodec/modeling_encodec.py#L226
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct EncodecLSTM {
|
||||
layers: Vec<candle_nn::LSTM>,
|
||||
}
|
||||
|
||||
impl EncodecLSTM {
|
||||
pub fn new(dim: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let vb = &vb.pp("lstm");
|
||||
let mut layers = vec![];
|
||||
for layer_idx in 0..cfg.num_lstm_layers {
|
||||
let config = candle_nn::LSTMConfig {
|
||||
layer_idx,
|
||||
..Default::default()
|
||||
};
|
||||
let lstm = candle_nn::lstm(dim, dim, config, vb.clone())?;
|
||||
layers.push(lstm)
|
||||
}
|
||||
Ok(Self { layers })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for EncodecLSTM {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
use candle_nn::RNN;
|
||||
// This is different from the Python transformers version as candle LSTM is batch first.
|
||||
let xs = xs.t()?;
|
||||
let residual = &xs;
|
||||
let mut xs = xs.clone();
|
||||
for layer in self.layers.iter() {
|
||||
let states = layer.seq(&xs)?;
|
||||
xs = layer.states_to_tensor(&states)?;
|
||||
}
|
||||
let xs = (xs + residual)?.t()?;
|
||||
Ok(xs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct EncodecConvTranspose1d {
|
||||
conv: ConvTranspose1d,
|
||||
}
|
||||
|
||||
impl EncodecConvTranspose1d {
|
||||
fn new(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
k: usize,
|
||||
stride: usize,
|
||||
_cfg: &Config,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let cfg = candle_nn::ConvTranspose1dConfig {
|
||||
stride,
|
||||
..Default::default()
|
||||
};
|
||||
let conv = conv_transpose1d_weight_norm(in_c, out_c, k, true, cfg, vb.pp("conv"))?;
|
||||
Ok(Self { conv })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for EncodecConvTranspose1d {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
xs.apply(&self.conv)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct EncodecConv1d {
|
||||
causal: bool,
|
||||
conv: Conv1d,
|
||||
norm: Option<candle_nn::GroupNorm>,
|
||||
pad_mode: PadMode,
|
||||
}
|
||||
|
||||
impl EncodecConv1d {
|
||||
pub fn new(
|
||||
in_c: usize,
|
||||
out_c: usize,
|
||||
kernel_size: usize,
|
||||
stride: usize,
|
||||
cfg: &Config,
|
||||
vb: VarBuilder,
|
||||
) -> Result<Self> {
|
||||
let conv = match cfg.norm_type {
|
||||
NormType::WeightNorm => conv1d_weight_norm(
|
||||
in_c,
|
||||
out_c,
|
||||
kernel_size,
|
||||
candle_nn::Conv1dConfig {
|
||||
padding: 0,
|
||||
stride,
|
||||
groups: 1,
|
||||
dilation: 1,
|
||||
},
|
||||
vb.pp("conv"),
|
||||
)?,
|
||||
NormType::None | NormType::TimeGroupNorm => conv1d(
|
||||
in_c,
|
||||
out_c,
|
||||
kernel_size,
|
||||
candle_nn::Conv1dConfig {
|
||||
padding: 0,
|
||||
stride,
|
||||
groups: 1,
|
||||
dilation: 1,
|
||||
},
|
||||
vb.pp("conv"),
|
||||
)?,
|
||||
};
|
||||
let norm = match cfg.norm_type {
|
||||
NormType::None | NormType::WeightNorm => None,
|
||||
NormType::TimeGroupNorm => {
|
||||
let gn = candle_nn::group_norm(1, out_c, 1e-5, vb.pp("norm"))?;
|
||||
Some(gn)
|
||||
}
|
||||
};
|
||||
Ok(Self {
|
||||
causal: cfg.use_causal_conv,
|
||||
conv,
|
||||
norm,
|
||||
pad_mode: cfg.pad_mode,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for EncodecConv1d {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let (_b, _t, _c) = xs.dims3()?;
|
||||
let k_size = self.conv.weight().dim(D::Minus1)?;
|
||||
let conv_cfg = self.conv.config();
|
||||
// Effective kernel size with dilations.
|
||||
let k_size = (k_size - 1) * conv_cfg.dilation + 1;
|
||||
let padding_total = k_size - conv_cfg.stride;
|
||||
let extra_padding =
|
||||
get_extra_padding_for_conv1d(xs, k_size, conv_cfg.stride, padding_total)?;
|
||||
let xs = if self.causal {
|
||||
pad1d(xs, padding_total, extra_padding, self.pad_mode)?
|
||||
} else {
|
||||
let padding_right = padding_total / 2;
|
||||
let padding_left = padding_total - padding_right;
|
||||
pad1d(
|
||||
xs,
|
||||
padding_left,
|
||||
padding_right + extra_padding,
|
||||
self.pad_mode,
|
||||
)?
|
||||
};
|
||||
let xs = self.conv.forward(&xs)?;
|
||||
match &self.norm {
|
||||
None => Ok(xs),
|
||||
Some(norm) => xs.apply(norm),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct EncodecResnetBlock {
|
||||
block_conv1: EncodecConv1d,
|
||||
block_conv2: EncodecConv1d,
|
||||
shortcut: Option<EncodecConv1d>,
|
||||
}
|
||||
|
||||
impl EncodecResnetBlock {
|
||||
pub fn new(dim: usize, dilations: &[usize], cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let h = dim / cfg.compress;
|
||||
let mut layer = Layer::new(vb.pp("block"));
|
||||
if dilations.len() != 2 {
|
||||
candle::bail!("expected dilations of size 2")
|
||||
}
|
||||
// TODO: Apply dilations!
|
||||
layer.inc();
|
||||
let block_conv1 =
|
||||
EncodecConv1d::new(dim, h, cfg.residual_kernel_size, 1, cfg, layer.next())?;
|
||||
layer.inc();
|
||||
let block_conv2 = EncodecConv1d::new(h, dim, 1, 1, cfg, layer.next())?;
|
||||
let shortcut = if cfg.use_conv_shortcut {
|
||||
let conv = EncodecConv1d::new(dim, dim, 1, 1, cfg, vb.pp("shortcut"))?;
|
||||
Some(conv)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
Ok(Self {
|
||||
block_conv1,
|
||||
block_conv2,
|
||||
shortcut,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for EncodecResnetBlock {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let residual = xs.clone();
|
||||
let xs = xs.elu(1.)?;
|
||||
let xs = self.block_conv1.forward(&xs)?;
|
||||
let xs = xs.elu(1.)?;
|
||||
let xs = self.block_conv2.forward(&xs)?;
|
||||
let xs = match &self.shortcut {
|
||||
None => (xs + residual)?,
|
||||
Some(shortcut) => xs.add(&shortcut.forward(&residual)?)?,
|
||||
};
|
||||
Ok(xs)
|
||||
}
|
||||
}
|
||||
|
||||
struct Layer<'a> {
|
||||
vb: VarBuilder<'a>,
|
||||
cnt: usize,
|
||||
}
|
||||
|
||||
impl<'a> Layer<'a> {
|
||||
fn new(vb: VarBuilder<'a>) -> Self {
|
||||
Self { vb, cnt: 0 }
|
||||
}
|
||||
|
||||
fn inc(&mut self) {
|
||||
self.cnt += 1;
|
||||
}
|
||||
|
||||
fn next(&mut self) -> VarBuilder {
|
||||
let vb = self.vb.pp(&self.cnt.to_string());
|
||||
self.cnt += 1;
|
||||
vb
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Encoder {
|
||||
init_conv: EncodecConv1d,
|
||||
sampling_layers: Vec<(Vec<EncodecResnetBlock>, EncodecConv1d)>,
|
||||
final_lstm: EncodecLSTM,
|
||||
final_conv: EncodecConv1d,
|
||||
}
|
||||
|
||||
impl Encoder {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let mut layer = Layer::new(vb.pp("layers"));
|
||||
let init_conv = EncodecConv1d::new(
|
||||
cfg.audio_channels,
|
||||
cfg.num_filters,
|
||||
cfg.kernel_size,
|
||||
1,
|
||||
cfg,
|
||||
layer.next(),
|
||||
)?;
|
||||
let mut sampling_layers = vec![];
|
||||
let mut scaling = 1;
|
||||
for &ratio in cfg.upsampling_ratios.iter().rev() {
|
||||
let current_scale = scaling * cfg.num_filters;
|
||||
let mut resnets = vec![];
|
||||
for j in 0..(cfg.num_residual_layers as u32) {
|
||||
let resnet = EncodecResnetBlock::new(
|
||||
current_scale,
|
||||
&[cfg.dilation_growth_rate.pow(j), 1],
|
||||
cfg,
|
||||
layer.next(),
|
||||
)?;
|
||||
resnets.push(resnet)
|
||||
}
|
||||
layer.inc(); // ELU
|
||||
let conv1d = EncodecConv1d::new(
|
||||
current_scale,
|
||||
current_scale * 2,
|
||||
ratio * 2,
|
||||
ratio,
|
||||
cfg,
|
||||
layer.next(),
|
||||
)?;
|
||||
sampling_layers.push((resnets, conv1d));
|
||||
scaling *= 2;
|
||||
}
|
||||
let final_lstm = EncodecLSTM::new(cfg.num_filters * scaling, cfg, layer.next())?;
|
||||
layer.inc(); // ELU
|
||||
let final_conv = EncodecConv1d::new(
|
||||
cfg.num_filters * scaling,
|
||||
cfg.hidden_size,
|
||||
cfg.last_kernel_size,
|
||||
1,
|
||||
cfg,
|
||||
layer.next(),
|
||||
)?;
|
||||
Ok(Self {
|
||||
init_conv,
|
||||
sampling_layers,
|
||||
final_conv,
|
||||
final_lstm,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Encoder {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let mut xs = xs.apply(&self.init_conv)?;
|
||||
for (resnets, conv) in self.sampling_layers.iter() {
|
||||
for resnet in resnets.iter() {
|
||||
xs = xs.apply(resnet)?;
|
||||
}
|
||||
xs = xs.elu(1.0)?.apply(conv)?;
|
||||
}
|
||||
xs.apply(&self.final_lstm)?
|
||||
.elu(1.0)?
|
||||
.apply(&self.final_conv)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Decoder {
|
||||
init_conv: EncodecConv1d,
|
||||
init_lstm: EncodecLSTM,
|
||||
sampling_layers: Vec<(EncodecConvTranspose1d, Vec<EncodecResnetBlock>)>,
|
||||
final_conv: EncodecConv1d,
|
||||
}
|
||||
|
||||
impl Decoder {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let mut layer = Layer::new(vb.pp("layers"));
|
||||
let mut scaling = usize::pow(2, cfg.upsampling_ratios.len() as u32);
|
||||
let init_conv = EncodecConv1d::new(
|
||||
cfg.hidden_size,
|
||||
cfg.num_filters * scaling,
|
||||
cfg.last_kernel_size,
|
||||
1,
|
||||
cfg,
|
||||
layer.next(),
|
||||
)?;
|
||||
let init_lstm = EncodecLSTM::new(cfg.num_filters * scaling, cfg, layer.next())?;
|
||||
let mut sampling_layers = vec![];
|
||||
for &ratio in cfg.upsampling_ratios.iter() {
|
||||
let current_scale = scaling * cfg.num_filters;
|
||||
layer.inc(); // ELU
|
||||
let conv1d = EncodecConvTranspose1d::new(
|
||||
current_scale,
|
||||
current_scale / 2,
|
||||
ratio * 2,
|
||||
ratio,
|
||||
cfg,
|
||||
layer.next(),
|
||||
)?;
|
||||
let mut resnets = vec![];
|
||||
for j in 0..(cfg.num_residual_layers as u32) {
|
||||
let resnet = EncodecResnetBlock::new(
|
||||
current_scale / 2,
|
||||
&[cfg.dilation_growth_rate.pow(j), 1],
|
||||
cfg,
|
||||
layer.next(),
|
||||
)?;
|
||||
resnets.push(resnet)
|
||||
}
|
||||
sampling_layers.push((conv1d, resnets));
|
||||
scaling /= 2;
|
||||
}
|
||||
layer.inc(); // ELU
|
||||
let final_conv = EncodecConv1d::new(
|
||||
cfg.num_filters,
|
||||
cfg.audio_channels,
|
||||
cfg.last_kernel_size,
|
||||
1,
|
||||
cfg,
|
||||
layer.next(),
|
||||
)?;
|
||||
Ok(Self {
|
||||
init_conv,
|
||||
init_lstm,
|
||||
sampling_layers,
|
||||
final_conv,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Decoder {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let mut xs = xs.apply(&self.init_conv)?.apply(&self.init_lstm)?;
|
||||
for (conv, resnets) in self.sampling_layers.iter() {
|
||||
xs = xs.elu(1.)?.apply(conv)?;
|
||||
for resnet in resnets.iter() {
|
||||
xs = xs.apply(resnet)?
|
||||
}
|
||||
}
|
||||
xs.elu(1.)?.apply(&self.final_conv)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Model {
|
||||
encoder: Encoder,
|
||||
decoder: Decoder,
|
||||
quantizer: ResidualVectorQuantizer,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let encoder = Encoder::new(cfg, vb.pp("encoder"))?;
|
||||
let decoder = Decoder::new(cfg, vb.pp("decoder"))?;
|
||||
let quantizer = ResidualVectorQuantizer::new(cfg, vb.pp("quantizer"))?;
|
||||
Ok(Self {
|
||||
encoder,
|
||||
decoder,
|
||||
quantizer,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn forward(&self, _xs: &Tensor) -> Result<Tensor> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
pub fn encode(&self, _xs: &Tensor) -> Result<Tensor> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
pub fn decode(&self, codes: &Tensor) -> Result<Tensor> {
|
||||
let (_b_sz, _codebooks, _seqlen) = codes.dims3()?;
|
||||
let codes = codes.transpose(0, 1)?;
|
||||
let embeddings = self.quantizer.decode(&codes)?;
|
||||
let outputs = self.decoder.forward(&embeddings)?;
|
||||
Ok(outputs)
|
||||
}
|
||||
}
|
@ -8,6 +8,7 @@ pub mod convnext;
|
||||
pub mod dinov2;
|
||||
pub mod distilbert;
|
||||
pub mod efficientnet;
|
||||
pub mod encodec;
|
||||
pub mod falcon;
|
||||
pub mod gemma;
|
||||
pub mod jina_bert;
|
||||
|
Reference in New Issue
Block a user