Add the blip example. (#1144)

* Add the blip example.

* Tweak the example.

* Implement the cross-attn logic.

* Fix some shape mismatches.

* Get some logits out.

* Get some caption to be generated.
This commit is contained in:
Laurent Mazare
2023-10-21 20:05:02 +01:00
committed by GitHub
parent e8f760ee44
commit 0d9bb4eb18
3 changed files with 223 additions and 45 deletions

View File

@ -5,24 +5,59 @@ use candle::{Module, Result, Tensor, D};
use candle_nn::{layer_norm, Conv2dConfig, LayerNorm, VarBuilder};
#[derive(Debug, Clone)]
struct VisionConfig {
hidden_size: usize,
intermediate_size: usize,
projection_dim: usize,
num_hidden_layers: usize,
num_attention_heads: usize,
image_size: usize,
patch_size: usize,
hidden_act: candle_nn::Activation,
layer_norm_eps: f64,
pub struct VisionConfig {
pub hidden_size: usize,
pub intermediate_size: usize,
pub projection_dim: usize,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
pub image_size: usize,
pub patch_size: usize,
pub hidden_act: candle_nn::Activation,
pub layer_norm_eps: f64,
}
#[derive(Debug, Clone)]
struct Config {
text_config: blip_text::Config,
vision_config: VisionConfig,
projection_dim: usize,
image_text_hidden_size: usize,
pub struct Config {
pub text_config: blip_text::Config,
pub vision_config: VisionConfig,
pub projection_dim: usize,
pub image_text_hidden_size: usize,
}
impl Config {
pub fn image_captioning_large() -> Self {
let text_config = blip_text::Config {
vocab_size: 30524,
hidden_size: 768,
encoder_hidden_size: 1024,
intermediate_size: 3072,
projection_dim: 768,
num_hidden_layers: 12,
num_attention_heads: 12,
max_position_embeddings: 512,
hidden_act: candle_nn::Activation::Gelu,
layer_norm_eps: 1e-12,
is_decoder: true,
};
let vision_config = VisionConfig {
hidden_size: 1024,
intermediate_size: 4096,
projection_dim: 512,
num_hidden_layers: 24,
num_attention_heads: 16,
image_size: 384,
patch_size: 16,
hidden_act: candle_nn::Activation::Gelu,
layer_norm_eps: 1e-5,
};
Self {
text_config,
vision_config,
projection_dim: 512,
image_text_hidden_size: 256,
}
}
}
#[derive(Debug, Clone)]
@ -200,6 +235,7 @@ struct Encoder {
impl Encoder {
fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> {
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
let vb = vb.pp("layers");
for i in 0..cfg.num_hidden_layers {
let layer = EncoderLayer::new(cfg, vb.pp(i))?;
layers.push(layer)
@ -217,7 +253,7 @@ impl Encoder {
}
#[derive(Debug, Clone)]
struct VisionModel {
pub struct VisionModel {
embeddings: VisionEmbeddings,
encoder: Encoder,
post_layernorm: LayerNorm,
@ -241,23 +277,19 @@ impl Module for VisionModel {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = xs.apply(&self.embeddings)?;
let encoder_outputs = self.encoder.forward(&xs, None)?;
let last_hidden_state = encoder_outputs.get(0)?;
last_hidden_state
.apply(&self.post_layernorm)?
.narrow(1, 0, 1)?
.squeeze(1)?
.apply(&self.post_layernorm)
// Return the last hidden state rather than pooled outputs.
encoder_outputs.apply(&self.post_layernorm)
}
}
#[derive(Debug, Clone)]
struct BlipForConditionalGeneration {
pub struct BlipForConditionalGeneration {
vision_model: VisionModel,
text_decoder: blip_text::TextLMHeadModel,
}
impl BlipForConditionalGeneration {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let vision_model = VisionModel::new(&cfg.vision_config, vb.pp("vision_model"))?;
let text_decoder =
blip_text::TextLMHeadModel::new(&cfg.text_config, vb.pp("text_decoder"))?;
@ -267,12 +299,38 @@ impl BlipForConditionalGeneration {
})
}
fn forward(
pub fn vision_model(&self) -> &VisionModel {
&self.vision_model
}
pub fn text_decoder(&self) -> &blip_text::TextLMHeadModel {
&self.text_decoder
}
pub fn generate(
&self,
pixel_values: &Tensor,
input_ids: Option<&Tensor>,
attention_mask: Option<&Tensor>,
) -> Result<Tensor> {
let image_embeds = pixel_values.apply(&self.vision_model)?;
let b_size = image_embeds.dim(0)?;
if b_size > 1 {
candle::bail!("only a batch size of 1 is supported")
}
let mut logits_processor = crate::generation::LogitsProcessor::new(1337, None, None);
let mut token_ids = vec![30522u32];
for i in 0..1000 {
let input_ids =
Tensor::new(token_ids.as_slice(), pixel_values.device())?.broadcast_left(b_size)?;
let logits = self.text_decoder.forward(&input_ids, &image_embeds)?;
println!("{logits:?}");
let logits = logits.squeeze(0)?;
let logits = logits.get(logits.dim(0)? - 1)?;
let token = logits_processor.sample(&logits)?;
println!("{token}");
token_ids.push(token)
}
todo!()
}
}

View File

@ -5,17 +5,17 @@ use candle_nn::{layer_norm, LayerNorm, VarBuilder};
#[derive(Debug, Clone)]
pub struct Config {
vocab_size: usize,
hidden_size: usize,
encoder_hidden_size: usize,
intermediate_size: usize,
projection_dim: usize,
num_hidden_layers: usize,
num_attention_heads: usize,
max_position_embeddings: usize,
hidden_act: candle_nn::Activation,
layer_norm_eps: f64,
is_decoder: bool,
pub vocab_size: usize,
pub hidden_size: usize,
pub encoder_hidden_size: usize,
pub intermediate_size: usize,
pub projection_dim: usize,
pub num_hidden_layers: usize,
pub num_attention_heads: usize,
pub max_position_embeddings: usize,
pub hidden_act: candle_nn::Activation,
pub layer_norm_eps: f64,
pub is_decoder: bool,
}
#[derive(Debug, Clone)]
@ -47,6 +47,17 @@ impl TextEmbeddings {
}
}
impl Module for TextEmbeddings {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let seq_len = xs.dim(1)?;
// Use past_key_values_length if we add a kv cache.
let position_ids = self.position_ids.narrow(1, 0, seq_len)?;
let embeddings = self.word_embedddings.forward(xs)?;
let position_embeddings = self.position_embeddings.forward(&position_ids)?;
(embeddings + position_embeddings)?.apply(&self.layer_norm)
}
}
#[derive(Debug, Clone)]
struct TextSelfAttention {
query: Linear,
@ -55,6 +66,7 @@ struct TextSelfAttention {
all_head_size: usize,
attention_head_size: usize,
num_attention_heads: usize,
attention_scale: f64,
}
impl TextSelfAttention {
@ -70,6 +82,7 @@ impl TextSelfAttention {
};
let key = linear(in_size, all_head_size, vb.pp("key"))?;
let value = linear(in_size, all_head_size, vb.pp("value"))?;
let attention_scale = 1f64 / (attention_head_size as f64).sqrt();
Ok(Self {
query,
key,
@ -77,6 +90,7 @@ impl TextSelfAttention {
all_head_size,
attention_head_size,
num_attention_heads,
attention_scale,
})
}
@ -90,6 +104,35 @@ impl TextSelfAttention {
))?
.permute((0, 2, 1, 3))
}
fn forward(&self, xs: &Tensor, encoder_hidden_states: Option<&Tensor>) -> Result<Tensor> {
let query = self
.transpose_for_scores(&self.query.forward(xs)?)?
.contiguous()?;
let (key, value) = match encoder_hidden_states {
None => {
let key = self.transpose_for_scores(&self.key.forward(xs)?)?;
let value = self.transpose_for_scores(&self.value.forward(xs)?)?;
// TODO: kv cache
(key, value)
}
Some(xs) => {
let key = self.transpose_for_scores(&self.key.forward(xs)?)?;
let value = self.transpose_for_scores(&self.value.forward(xs)?)?;
// no kv-cache in this case, but the results could probably be memoized.
(key, value)
}
};
let key = key.contiguous()?;
let value = value.contiguous()?;
let attention_scores = query.matmul(&key.t()?)?;
let attention_scores = (attention_scores * self.attention_scale)?;
let attention_probs = candle_nn::ops::softmax_last_dim(&attention_scores)?;
attention_probs
.matmul(&value)?
.permute((0, 2, 1, 3))?
.flatten_from(D::Minus2)
}
}
#[derive(Debug, Clone)]
@ -122,6 +165,11 @@ impl TextAttention {
let output = TextSelfOutput::new(cfg, vb.pp("output"))?;
Ok(Self { self_, output })
}
fn forward(&self, xs: &Tensor, encoder_hidden_states: Option<&Tensor>) -> Result<Tensor> {
let self_outputs = self.self_.forward(xs, encoder_hidden_states)?;
self.output.forward(&self_outputs, xs)
}
}
#[derive(Debug, Clone)]
@ -176,7 +224,7 @@ impl TextLayer {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let attention = TextAttention::new(cfg, false, vb.pp("attention"))?;
let cross_attention = if cfg.is_decoder {
Some(TextAttention::new(cfg, true, vb.pp("attention"))?)
Some(TextAttention::new(cfg, true, vb.pp("crossattention"))?)
} else {
None
};
@ -189,11 +237,15 @@ impl TextLayer {
output,
})
}
}
impl Module for TextLayer {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
todo!()
fn forward(&self, xs: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
let attention_output = self.attention.forward(xs, None)?;
let attention_output = match &self.cross_attention {
Some(ca) => ca.forward(&attention_output, Some(encoder_hidden_states))?,
None => candle::bail!("expected some cross-attn"),
};
let intermediate_output = self.intermediate.forward(&attention_output)?;
self.output.forward(&intermediate_output, &attention_output)
}
}
@ -212,13 +264,11 @@ impl TextEncoder {
}
Ok(Self { layers })
}
}
impl Module for TextEncoder {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
fn forward(&self, xs: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
let mut xs = xs.clone();
for layer in self.layers.iter() {
xs = xs.apply(layer)?
xs = layer.forward(&xs, encoder_hidden_states)?
}
Ok(xs)
}
@ -333,6 +383,15 @@ impl TextModel {
pooler: None,
})
}
fn forward(&self, input_ids: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
let embedding_output = self.embeddings.forward(input_ids)?;
let sequence_output = self
.encoder
.forward(&embedding_output, encoder_hidden_states)?;
// We're interested in the sequence-output rather than the pooled-output.
Ok(sequence_output)
}
}
#[derive(Debug, Clone)]
@ -347,4 +406,11 @@ impl TextLMHeadModel {
let cls = TextOnlyMLMHead::new(cfg, vb.pp("cls"))?;
Ok(Self { bert, cls })
}
pub fn forward(&self, input_ids: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
let sequence_output = self.bert.forward(input_ids, encoder_hidden_states)?;
let prediction_scores = self.cls.forward(&sequence_output)?;
// return_logits is false so we don't discard the last sequence element.
Ok(prediction_scores)
}
}