mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
Use the hub model file when possible. (#1190)
* Use the hub model file when possible. * And add a mention in the main readme.
This commit is contained in:
@ -56,7 +56,7 @@ These online demos run entirely in your browser:
|
||||
- [T5](https://huggingface.co/spaces/radames/Candle-T5-Generation-Wasm): text generation.
|
||||
- [Phi-v1.5](https://huggingface.co/spaces/radames/Candle-Phi-1.5-Wasm): text generation.
|
||||
- [Segment Anything Model](https://huggingface.co/spaces/radames/candle-segment-anything-wasm): Image segmentation.
|
||||
- [Blip](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning): image captioning.
|
||||
- [BLIP](https://huggingface.co/spaces/radames/Candle-BLIP-Image-Captioning): image captioning.
|
||||
|
||||
We also provide a some command line based examples using state of the art models:
|
||||
|
||||
@ -96,7 +96,8 @@ We also provide a some command line based examples using state of the art models
|
||||
<img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/segment-anything/assets/sam_merged.jpg" width="200">
|
||||
|
||||
- [Whisper](./candle-examples/examples/whisper/): speech recognition model.
|
||||
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/): useful for sentence embeddings.
|
||||
- [T5](./candle-examples/examples/t5), [Bert](./candle-examples/examples/bert/),
|
||||
[JinaBert](./candle-examples/examples/jina-bert/) : useful for sentence embeddings.
|
||||
- [DINOv2](./candle-examples/examples/dinov2/): computer vision model trained
|
||||
using self-supervision (can be used for imagenet classification, depth
|
||||
evaluation, segmentation).
|
||||
|
45
candle-examples/examples/jina-bert/README.md
Normal file
45
candle-examples/examples/jina-bert/README.md
Normal file
@ -0,0 +1,45 @@
|
||||
# candle-jina-bert
|
||||
|
||||
Jina-Bert is a general large language model with a context size of 8192, [model
|
||||
card](https://huggingface.co/jinaai/jina-embeddings-v2-base-en). In this example
|
||||
it can be used for two different tasks:
|
||||
- Compute sentence embeddings for a prompt.
|
||||
- Compute similarities between a set of sentences.
|
||||
|
||||
|
||||
## Sentence embeddings
|
||||
|
||||
Jina-Bert is used to compute the sentence embeddings for a prompt. The model weights
|
||||
are downloaded from the hub on the first run.
|
||||
|
||||
```bash
|
||||
cargo run --example jina-bert --release -- --prompt "Here is a test sentence"
|
||||
|
||||
> [[[ 0.1595, -0.9885, 0.6494, ..., 0.3003, -0.6901, -1.2355],
|
||||
> [ 0.0374, -0.1798, 1.3359, ..., 0.6731, 0.2133, -1.6807],
|
||||
> [ 0.1700, -0.8534, 0.8924, ..., -0.1785, -0.0727, -1.5087],
|
||||
> ...
|
||||
> [-0.3113, -1.3665, 0.2027, ..., -0.2519, 0.1711, -1.5811],
|
||||
> [ 0.0907, -1.0492, 0.5382, ..., 0.0242, -0.7077, -1.0830],
|
||||
> [ 0.0369, -0.6343, 0.6105, ..., 0.0671, 0.3778, -1.1505]]]
|
||||
> Tensor[[1, 7, 768], f32]
|
||||
```
|
||||
|
||||
## Similarities
|
||||
|
||||
In this example, Jina-Bert is used to compute the sentence embeddings for a set of
|
||||
sentences (hardcoded in the examples). Then cosine similarities are computed for
|
||||
each sentence pair and they are reported by decreasing values, hence the first
|
||||
reported pair contains the two sentences that have the highest similarity score.
|
||||
The sentence embeddings are computed using average pooling through all the
|
||||
sentence tokens, including some potential padding.
|
||||
|
||||
```bash
|
||||
cargo run --example jina-bert --release
|
||||
|
||||
> score: 0.94 'The new movie is awesome' 'The new movie is so great'
|
||||
> score: 0.81 'The cat sits outside' 'The cat plays in the garden'
|
||||
> score: 0.78 'I love pasta' 'Do you like pizza?'
|
||||
> score: 0.68 'I love pasta' 'The new movie is awesome'
|
||||
> score: 0.67 'A man is playing guitar' 'A woman watches TV'
|
||||
```
|
@ -35,19 +35,37 @@ struct Args {
|
||||
normalize_embeddings: bool,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer: String,
|
||||
tokenizer: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
model: String,
|
||||
model: Option<String>,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
fn build_model_and_tokenizer(&self) -> anyhow::Result<(BertModel, tokenizers::Tokenizer)> {
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
let model = match &self.model {
|
||||
Some(model_file) => std::path::PathBuf::from(model_file),
|
||||
None => Api::new()?
|
||||
.repo(Repo::new(
|
||||
"jinaai/jina-embeddings-v2-base-en".to_string(),
|
||||
RepoType::Model,
|
||||
))
|
||||
.get("model.safetensors")?,
|
||||
};
|
||||
let tokenizer = match &self.tokenizer {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => Api::new()?
|
||||
.repo(Repo::new(
|
||||
"sentence-transformers/all-MiniLM-L6-v2".to_string(),
|
||||
RepoType::Model,
|
||||
))
|
||||
.get("tokenizer.json")?,
|
||||
};
|
||||
let device = candle_examples::device(self.cpu)?;
|
||||
let config = Config::v2_base();
|
||||
let tokenizer = tokenizers::Tokenizer::from_file(&self.tokenizer).map_err(E::msg)?;
|
||||
let vb =
|
||||
unsafe { VarBuilder::from_mmaped_safetensors(&[&self.model], DType::F32, &device)? };
|
||||
let tokenizer = tokenizers::Tokenizer::from_file(tokenizer).map_err(E::msg)?;
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model], DType::F32, &device)? };
|
||||
let model = BertModel::new(vb, &config)?;
|
||||
Ok((model, tokenizer))
|
||||
}
|
||||
|
Reference in New Issue
Block a user