Add support for Llama 3.1 (#2359)

* Add Llama 3.1 rope

* Clippy

* Format

* Clippy

* Add support for multiple eos tokens:

* Untagged either

* Remove either dep and fix settings.json

* Make the max positional embeddings configurable
This commit is contained in:
Eric Buehler
2024-07-26 15:32:26 -04:00
committed by GitHub
parent ddafc61055
commit 0f5cbb08b3
24 changed files with 165 additions and 71 deletions

View File

@ -12,7 +12,7 @@ fn run_affine_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name:
let m = 1024;
let k = 1024;
let tensor = Tensor::zeros((b, m, k), dtype, &device).unwrap();
let tensor = Tensor::zeros((b, m, k), dtype, device).unwrap();
let flops = b * m * k * dtype.size_in_bytes();

View File

@ -7,7 +7,7 @@ use criterion::{black_box, criterion_group, Criterion, Throughput};
use std::time::Instant;
fn run(matmul: &QMatMul, x: &Tensor) {
matmul.forward(&x).unwrap();
matmul.forward(x).unwrap();
}
fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
@ -50,7 +50,7 @@ fn run_bench(c: &mut Criterion, device: &Device, dtype: GgmlDType) {
fn criterion_benchmark(c: &mut Criterion) {
let handler = BenchDeviceHandler::new().unwrap();
for device in handler.devices {
for dtype in vec![
for dtype in [
GgmlDType::F32,
GgmlDType::F16,
GgmlDType::Q4_0,

View File

@ -12,7 +12,7 @@ fn run_unary_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &
let m = 1024;
let k = 1024;
let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, &device)
let tensor = Tensor::arange(0.0f32, (b * m * k) as f32, device)
.unwrap()
.to_dtype(dtype)
.unwrap()

View File

@ -25,9 +25,9 @@ const SIZE: usize = B * M * K;
const DATA: [u8; SIZE] = create_cond_arr::<SIZE>();
fn run_where_cond_benchmark(c: &mut Criterion, device: &Device, dtype: DType, name: &str) {
let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), &device).unwrap();
let on_true = Tensor::ones((B, M, K), dtype, &device).unwrap();
let on_false = Tensor::zeros((B, M, K), dtype, &device).unwrap();
let tensor = Tensor::from_slice(DATA.as_slice(), (B, M, K), device).unwrap();
let on_true = Tensor::ones((B, M, K), dtype, device).unwrap();
let on_false = Tensor::zeros((B, M, K), dtype, device).unwrap();
let elements = B * M * K;
// E.g. 2 f32 tensors + 1 u8 tensor