Add support for Llama 3.1 (#2359)

* Add Llama 3.1 rope

* Clippy

* Format

* Clippy

* Add support for multiple eos tokens:

* Untagged either

* Remove either dep and fix settings.json

* Make the max positional embeddings configurable
This commit is contained in:
Eric Buehler
2024-07-26 15:32:26 -04:00
committed by GitHub
parent ddafc61055
commit 0f5cbb08b3
24 changed files with 165 additions and 71 deletions

View File

@ -93,9 +93,9 @@ impl candle::Module for PReLU {
/// # Arguments
///
/// * `num_channels` - The number of channels. Use `None` to have as single trainable value and
/// `Some` for a 1D vector with the appropriate number of channels. When applying the `forward`
/// function, the input tensor shape `s` should either be one dimension with this number of
/// channels or if `s.len() >= 2` it should have `s[1]` equal to this number.
/// `Some` for a 1D vector with the appropriate number of channels. When applying the `forward`
/// function, the input tensor shape `s` should either be one dimension with this number of
/// channels or if `s.len() >= 2` it should have `s[1]` equal to this number.
pub fn prelu(num_channels: Option<usize>, vs: crate::VarBuilder) -> Result<PReLU> {
let init_ws = crate::init::Init::Const(0.25);
// When using a scalar weight, the PyTorch encoding is to use a 1d vector of length 1.

View File

@ -264,6 +264,7 @@ impl SimpleBackend for VarMap {
}
}
#[allow(dead_code)]
pub struct SafeTensorWithRouting<'a> {
routing: HashMap<String, usize>,
safetensors: Vec<SafeTensors<'a>>,