mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
Add the phi-3 model. (#2120)
* Add the phi-3 model. * Faster rope. * Bugfix. * Fix the detokenization.
This commit is contained in:
@ -7,11 +7,13 @@ extern crate accelerate_src;
|
|||||||
use anyhow::{Error as E, Result};
|
use anyhow::{Error as E, Result};
|
||||||
use clap::{Parser, ValueEnum};
|
use clap::{Parser, ValueEnum};
|
||||||
|
|
||||||
|
use candle_examples::token_output_stream::TokenOutputStream;
|
||||||
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
|
use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as MixFormer};
|
||||||
use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi};
|
use candle_transformers::models::phi::{Config as PhiConfig, Model as Phi};
|
||||||
|
use candle_transformers::models::phi3::{Config as Phi3Config, Model as Phi3};
|
||||||
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
|
use candle_transformers::models::quantized_mixformer::MixFormerSequentialForCausalLM as QMixFormer;
|
||||||
|
|
||||||
use candle::{DType, Device, Tensor};
|
use candle::{DType, Device, IndexOp, Tensor};
|
||||||
use candle_nn::VarBuilder;
|
use candle_nn::VarBuilder;
|
||||||
use candle_transformers::generation::LogitsProcessor;
|
use candle_transformers::generation::LogitsProcessor;
|
||||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||||
@ -20,13 +22,14 @@ use tokenizers::Tokenizer;
|
|||||||
enum Model {
|
enum Model {
|
||||||
MixFormer(MixFormer),
|
MixFormer(MixFormer),
|
||||||
Phi(Phi),
|
Phi(Phi),
|
||||||
|
Phi3(Phi3),
|
||||||
Quantized(QMixFormer),
|
Quantized(QMixFormer),
|
||||||
}
|
}
|
||||||
|
|
||||||
struct TextGeneration {
|
struct TextGeneration {
|
||||||
model: Model,
|
model: Model,
|
||||||
device: Device,
|
device: Device,
|
||||||
tokenizer: Tokenizer,
|
tokenizer: TokenOutputStream,
|
||||||
logits_processor: LogitsProcessor,
|
logits_processor: LogitsProcessor,
|
||||||
repeat_penalty: f32,
|
repeat_penalty: f32,
|
||||||
repeat_last_n: usize,
|
repeat_last_n: usize,
|
||||||
@ -49,7 +52,7 @@ impl TextGeneration {
|
|||||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||||
Self {
|
Self {
|
||||||
model,
|
model,
|
||||||
tokenizer,
|
tokenizer: TokenOutputStream::new(tokenizer),
|
||||||
logits_processor,
|
logits_processor,
|
||||||
repeat_penalty,
|
repeat_penalty,
|
||||||
repeat_last_n,
|
repeat_last_n,
|
||||||
@ -61,7 +64,11 @@ impl TextGeneration {
|
|||||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||||
use std::io::Write;
|
use std::io::Write;
|
||||||
println!("starting the inference loop");
|
println!("starting the inference loop");
|
||||||
let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
|
let tokens = self
|
||||||
|
.tokenizer
|
||||||
|
.tokenizer()
|
||||||
|
.encode(prompt, true)
|
||||||
|
.map_err(E::msg)?;
|
||||||
if tokens.is_empty() {
|
if tokens.is_empty() {
|
||||||
anyhow::bail!("Empty prompts are not supported in the phi model.")
|
anyhow::bail!("Empty prompts are not supported in the phi model.")
|
||||||
}
|
}
|
||||||
@ -73,13 +80,14 @@ impl TextGeneration {
|
|||||||
}
|
}
|
||||||
let mut tokens = tokens.get_ids().to_vec();
|
let mut tokens = tokens.get_ids().to_vec();
|
||||||
let mut generated_tokens = 0usize;
|
let mut generated_tokens = 0usize;
|
||||||
let eos_token = match self.tokenizer.get_vocab(true).get("<|endoftext|>") {
|
let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
|
||||||
Some(token) => *token,
|
Some(token) => token,
|
||||||
None => anyhow::bail!("cannot find the endoftext token"),
|
None => anyhow::bail!("cannot find the endoftext token"),
|
||||||
};
|
};
|
||||||
print!("{prompt}");
|
print!("{prompt}");
|
||||||
std::io::stdout().flush()?;
|
std::io::stdout().flush()?;
|
||||||
let start_gen = std::time::Instant::now();
|
let start_gen = std::time::Instant::now();
|
||||||
|
let mut pos = 0;
|
||||||
for index in 0..sample_len {
|
for index in 0..sample_len {
|
||||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||||
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
|
||||||
@ -88,6 +96,7 @@ impl TextGeneration {
|
|||||||
Model::MixFormer(m) => m.forward(&input)?,
|
Model::MixFormer(m) => m.forward(&input)?,
|
||||||
Model::Phi(m) => m.forward(&input)?,
|
Model::Phi(m) => m.forward(&input)?,
|
||||||
Model::Quantized(m) => m.forward(&input)?,
|
Model::Quantized(m) => m.forward(&input)?,
|
||||||
|
Model::Phi3(m) => m.forward(&input, pos)?.i((.., 0, ..))?,
|
||||||
};
|
};
|
||||||
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
|
||||||
let logits = if self.repeat_penalty == 1. {
|
let logits = if self.repeat_penalty == 1. {
|
||||||
@ -107,10 +116,12 @@ impl TextGeneration {
|
|||||||
if next_token == eos_token {
|
if next_token == eos_token {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
|
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||||
print!("{token}");
|
print!("{t}");
|
||||||
std::io::stdout().flush()?;
|
std::io::stdout().flush()?;
|
||||||
}
|
}
|
||||||
|
pos += context_size;
|
||||||
|
}
|
||||||
let dt = start_gen.elapsed();
|
let dt = start_gen.elapsed();
|
||||||
println!(
|
println!(
|
||||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||||
@ -128,6 +139,8 @@ enum WhichModel {
|
|||||||
V1_5,
|
V1_5,
|
||||||
#[value(name = "2")]
|
#[value(name = "2")]
|
||||||
V2,
|
V2,
|
||||||
|
#[value(name = "3")]
|
||||||
|
V3,
|
||||||
#[value(name = "2-old")]
|
#[value(name = "2-old")]
|
||||||
V2Old,
|
V2Old,
|
||||||
PuffinPhiV2,
|
PuffinPhiV2,
|
||||||
@ -236,6 +249,7 @@ fn main() -> Result<()> {
|
|||||||
WhichModel::V1 => "microsoft/phi-1".to_string(),
|
WhichModel::V1 => "microsoft/phi-1".to_string(),
|
||||||
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
|
WhichModel::V1_5 => "microsoft/phi-1_5".to_string(),
|
||||||
WhichModel::V2 | WhichModel::V2Old => "microsoft/phi-2".to_string(),
|
WhichModel::V2 | WhichModel::V2Old => "microsoft/phi-2".to_string(),
|
||||||
|
WhichModel::V3 => "microsoft/Phi-3-mini-4k-instruct".to_string(),
|
||||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||||
"lmz/candle-quantized-phi".to_string()
|
"lmz/candle-quantized-phi".to_string()
|
||||||
}
|
}
|
||||||
@ -253,9 +267,10 @@ fn main() -> Result<()> {
|
|||||||
WhichModel::V1 => "refs/pr/8".to_string(),
|
WhichModel::V1 => "refs/pr/8".to_string(),
|
||||||
WhichModel::V1_5 => "refs/pr/73".to_string(),
|
WhichModel::V1_5 => "refs/pr/73".to_string(),
|
||||||
WhichModel::V2Old => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(),
|
WhichModel::V2Old => "834565c23f9b28b96ccbeabe614dd906b6db551a".to_string(),
|
||||||
WhichModel::V2 | WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
WhichModel::V2
|
||||||
"main".to_string()
|
| WhichModel::V3
|
||||||
}
|
| WhichModel::PuffinPhiV2
|
||||||
|
| WhichModel::PhiHermes => "main".to_string(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -264,9 +279,11 @@ fn main() -> Result<()> {
|
|||||||
let tokenizer_filename = match args.tokenizer {
|
let tokenizer_filename = match args.tokenizer {
|
||||||
Some(file) => std::path::PathBuf::from(file),
|
Some(file) => std::path::PathBuf::from(file),
|
||||||
None => match args.model {
|
None => match args.model {
|
||||||
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 | WhichModel::V2Old => {
|
WhichModel::V1
|
||||||
repo.get("tokenizer.json")?
|
| WhichModel::V1_5
|
||||||
}
|
| WhichModel::V2
|
||||||
|
| WhichModel::V2Old
|
||||||
|
| WhichModel::V3 => repo.get("tokenizer.json")?,
|
||||||
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
WhichModel::PuffinPhiV2 | WhichModel::PhiHermes => {
|
||||||
repo.get("tokenizer-puffin-phi-v2.json")?
|
repo.get("tokenizer-puffin-phi-v2.json")?
|
||||||
}
|
}
|
||||||
@ -282,14 +299,19 @@ fn main() -> Result<()> {
|
|||||||
WhichModel::V2 | WhichModel::V2Old => vec![repo.get("model-v2-q4k.gguf")?],
|
WhichModel::V2 | WhichModel::V2Old => vec![repo.get("model-v2-q4k.gguf")?],
|
||||||
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?],
|
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2-q4k.gguf")?],
|
||||||
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?],
|
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B-q4k.gguf")?],
|
||||||
|
WhichModel::V3 => anyhow::bail!(
|
||||||
|
"use the quantized or quantized-phi examples for quantized phi-v3"
|
||||||
|
),
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
match args.model {
|
match args.model {
|
||||||
WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?],
|
WhichModel::V1 | WhichModel::V1_5 => vec![repo.get("model.safetensors")?],
|
||||||
WhichModel::V2 | WhichModel::V2Old => candle_examples::hub_load_safetensors(
|
WhichModel::V2 | WhichModel::V2Old | WhichModel::V3 => {
|
||||||
|
candle_examples::hub_load_safetensors(
|
||||||
&repo,
|
&repo,
|
||||||
"model.safetensors.index.json",
|
"model.safetensors.index.json",
|
||||||
)?,
|
)?
|
||||||
|
}
|
||||||
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2.safetensors")?],
|
WhichModel::PuffinPhiV2 => vec![repo.get("model-puffin-phi-v2.safetensors")?],
|
||||||
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B.safetensors")?],
|
WhichModel::PhiHermes => vec![repo.get("model-phi-hermes-1_3B.safetensors")?],
|
||||||
}
|
}
|
||||||
@ -306,6 +328,9 @@ fn main() -> Result<()> {
|
|||||||
WhichModel::V2 | WhichModel::V2Old => Config::v2(),
|
WhichModel::V2 | WhichModel::V2Old => Config::v2(),
|
||||||
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
|
WhichModel::PuffinPhiV2 => Config::puffin_phi_v2(),
|
||||||
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
|
WhichModel::PhiHermes => Config::phi_hermes_1_3b(),
|
||||||
|
WhichModel::V3 => {
|
||||||
|
panic!("use the quantized or quantized-phi examples for quantized phi-v3")
|
||||||
|
}
|
||||||
};
|
};
|
||||||
let device = candle_examples::device(args.cpu)?;
|
let device = candle_examples::device(args.cpu)?;
|
||||||
let model = if args.quantized {
|
let model = if args.quantized {
|
||||||
@ -320,7 +345,12 @@ fn main() -> Result<()> {
|
|||||||
};
|
};
|
||||||
Model::Quantized(model)
|
Model::Quantized(model)
|
||||||
} else {
|
} else {
|
||||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
|
let dtype = if args.model == WhichModel::V3 && device.is_cuda() {
|
||||||
|
DType::BF16
|
||||||
|
} else {
|
||||||
|
DType::F32
|
||||||
|
};
|
||||||
|
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||||
match args.model {
|
match args.model {
|
||||||
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => {
|
WhichModel::V1 | WhichModel::V1_5 | WhichModel::V2 => {
|
||||||
let config_filename = repo.get("config.json")?;
|
let config_filename = repo.get("config.json")?;
|
||||||
@ -329,6 +359,13 @@ fn main() -> Result<()> {
|
|||||||
let phi = Phi::new(&config, vb)?;
|
let phi = Phi::new(&config, vb)?;
|
||||||
Model::Phi(phi)
|
Model::Phi(phi)
|
||||||
}
|
}
|
||||||
|
WhichModel::V3 => {
|
||||||
|
let config_filename = repo.get("config.json")?;
|
||||||
|
let config = std::fs::read_to_string(config_filename)?;
|
||||||
|
let config: Phi3Config = serde_json::from_str(&config)?;
|
||||||
|
let phi3 = Phi3::new(&config, vb)?;
|
||||||
|
Model::Phi3(phi3)
|
||||||
|
}
|
||||||
WhichModel::V2Old => {
|
WhichModel::V2Old => {
|
||||||
let config = config();
|
let config = config();
|
||||||
Model::MixFormer(MixFormer::new_v2(&config, vb)?)
|
Model::MixFormer(MixFormer::new_v2(&config, vb)?)
|
||||||
@ -421,6 +458,10 @@ fn mmlu<P: AsRef<std::path::Path>>(
|
|||||||
m.clear_kv_cache();
|
m.clear_kv_cache();
|
||||||
m.forward(&input)?
|
m.forward(&input)?
|
||||||
}
|
}
|
||||||
|
Model::Phi3(m) => {
|
||||||
|
m.clear_kv_cache();
|
||||||
|
m.forward(&input, 0)?
|
||||||
|
}
|
||||||
Model::Quantized(m) => {
|
Model::Quantized(m) => {
|
||||||
m.clear_kv_cache();
|
m.clear_kv_cache();
|
||||||
m.forward(&input)?
|
m.forward(&input)?
|
||||||
|
@ -28,6 +28,7 @@ pub mod moondream;
|
|||||||
pub mod mpt;
|
pub mod mpt;
|
||||||
pub mod persimmon;
|
pub mod persimmon;
|
||||||
pub mod phi;
|
pub mod phi;
|
||||||
|
pub mod phi3;
|
||||||
pub mod quantized_blip;
|
pub mod quantized_blip;
|
||||||
pub mod quantized_blip_text;
|
pub mod quantized_blip_text;
|
||||||
pub mod quantized_llama;
|
pub mod quantized_llama;
|
||||||
|
329
candle-transformers/src/models/phi3.rs
Normal file
329
candle-transformers/src/models/phi3.rs
Normal file
@ -0,0 +1,329 @@
|
|||||||
|
// This implementation is based on:
|
||||||
|
// https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/modeling_phi3.py
|
||||||
|
use crate::models::with_tracing::{linear_no_bias as linear, Linear, RmsNorm};
|
||||||
|
use candle::{DType, Device, Module, Result, Tensor, D};
|
||||||
|
use candle_nn::VarBuilder;
|
||||||
|
use std::sync::Arc;
|
||||||
|
|
||||||
|
// https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/config.json
|
||||||
|
#[derive(Debug, Clone, serde::Deserialize)]
|
||||||
|
pub struct Config {
|
||||||
|
pub vocab_size: usize,
|
||||||
|
pub hidden_act: candle_nn::Activation,
|
||||||
|
pub hidden_size: usize,
|
||||||
|
pub intermediate_size: usize,
|
||||||
|
pub num_hidden_layers: usize,
|
||||||
|
pub num_attention_heads: usize,
|
||||||
|
pub num_key_value_heads: usize,
|
||||||
|
pub rms_norm_eps: f64,
|
||||||
|
pub rope_theta: f64,
|
||||||
|
pub bos_token_id: Option<u32>,
|
||||||
|
pub eos_token_id: Option<u32>,
|
||||||
|
pub rope_scaling: Option<String>,
|
||||||
|
pub max_position_embeddings: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Config {
|
||||||
|
fn head_dim(&self) -> usize {
|
||||||
|
self.hidden_size / self.num_attention_heads
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct RotaryEmbedding {
|
||||||
|
sin: Tensor,
|
||||||
|
cos: Tensor,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl RotaryEmbedding {
|
||||||
|
fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
|
||||||
|
let dim = cfg.head_dim();
|
||||||
|
let max_seq_len = cfg.max_position_embeddings;
|
||||||
|
let inv_freq: Vec<_> = (0..dim)
|
||||||
|
.step_by(2)
|
||||||
|
.map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
|
||||||
|
.collect();
|
||||||
|
let inv_freq_len = inv_freq.len();
|
||||||
|
let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
|
||||||
|
let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
|
||||||
|
.to_dtype(dtype)?
|
||||||
|
.reshape((max_seq_len, 1))?;
|
||||||
|
let freqs = t.matmul(&inv_freq)?;
|
||||||
|
Ok(Self {
|
||||||
|
sin: freqs.sin()?,
|
||||||
|
cos: freqs.cos()?,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn apply_rotary_emb_qkv(
|
||||||
|
&self,
|
||||||
|
q: &Tensor,
|
||||||
|
k: &Tensor,
|
||||||
|
seqlen_offset: usize,
|
||||||
|
) -> Result<(Tensor, Tensor)> {
|
||||||
|
let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
|
||||||
|
let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
|
||||||
|
let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
|
||||||
|
let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
|
||||||
|
let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
|
||||||
|
Ok((q_embed, k_embed))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct Attention {
|
||||||
|
qkv_proj: Linear,
|
||||||
|
o_proj: Linear,
|
||||||
|
num_heads: usize,
|
||||||
|
num_kv_heads: usize,
|
||||||
|
num_kv_groups: usize,
|
||||||
|
head_dim: usize,
|
||||||
|
rotary_emb: Arc<RotaryEmbedding>,
|
||||||
|
kv_cache: Option<(Tensor, Tensor)>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Attention {
|
||||||
|
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let num_heads = cfg.num_attention_heads;
|
||||||
|
let num_kv_heads = cfg.num_key_value_heads;
|
||||||
|
let head_dim = cfg.head_dim();
|
||||||
|
let op_size = num_heads * head_dim + 2 * num_kv_heads * head_dim;
|
||||||
|
let qkv_proj = linear(cfg.hidden_size, op_size, vb.pp("qkv_proj"))?;
|
||||||
|
let o_proj = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("o_proj"))?;
|
||||||
|
Ok(Self {
|
||||||
|
qkv_proj,
|
||||||
|
o_proj,
|
||||||
|
rotary_emb,
|
||||||
|
kv_cache: None,
|
||||||
|
num_heads,
|
||||||
|
num_kv_heads,
|
||||||
|
num_kv_groups: num_heads / num_kv_heads,
|
||||||
|
head_dim,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(
|
||||||
|
&mut self,
|
||||||
|
xs: &Tensor,
|
||||||
|
attention_mask: Option<&Tensor>,
|
||||||
|
seqlen_offset: usize,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let (b_sz, q_len, _) = xs.dims3()?;
|
||||||
|
|
||||||
|
let qkv = self.qkv_proj.forward(xs)?;
|
||||||
|
let query_pos = self.num_heads * self.head_dim;
|
||||||
|
let query_states = qkv.narrow(D::Minus1, 0, query_pos)?;
|
||||||
|
let key_states = qkv.narrow(D::Minus1, query_pos, self.num_kv_heads * self.head_dim)?;
|
||||||
|
let value_states = qkv.narrow(
|
||||||
|
D::Minus1,
|
||||||
|
query_pos + self.num_kv_heads * self.head_dim,
|
||||||
|
self.num_kv_heads * self.head_dim,
|
||||||
|
)?;
|
||||||
|
|
||||||
|
let query_states = query_states
|
||||||
|
.reshape((b_sz, q_len, self.num_heads, self.head_dim))?
|
||||||
|
.transpose(1, 2)?;
|
||||||
|
let key_states = key_states
|
||||||
|
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||||
|
.transpose(1, 2)?;
|
||||||
|
let value_states = value_states
|
||||||
|
.reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
|
||||||
|
.transpose(1, 2)?;
|
||||||
|
|
||||||
|
let (query_states, key_states) =
|
||||||
|
self.rotary_emb
|
||||||
|
.apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
|
||||||
|
|
||||||
|
let (key_states, value_states) = match &self.kv_cache {
|
||||||
|
None => (key_states, value_states),
|
||||||
|
Some((prev_k, prev_v)) => {
|
||||||
|
let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
|
||||||
|
let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
|
||||||
|
(key_states, value_states)
|
||||||
|
}
|
||||||
|
};
|
||||||
|
self.kv_cache = Some((key_states.clone(), value_states.clone()));
|
||||||
|
|
||||||
|
let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
|
||||||
|
let value_states =
|
||||||
|
crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
|
||||||
|
|
||||||
|
let attn_output = {
|
||||||
|
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
|
||||||
|
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
|
||||||
|
|
||||||
|
let attn_weights = match attention_mask {
|
||||||
|
None => attn_weights,
|
||||||
|
Some(mask) => attn_weights.broadcast_add(mask)?,
|
||||||
|
};
|
||||||
|
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
|
||||||
|
attn_weights.matmul(&value_states)?
|
||||||
|
};
|
||||||
|
attn_output
|
||||||
|
.transpose(1, 2)?
|
||||||
|
.reshape((b_sz, q_len, ()))?
|
||||||
|
.apply(&self.o_proj)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn clear_kv_cache(&mut self) {
|
||||||
|
self.kv_cache = None
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct Mlp {
|
||||||
|
gate_up_proj: Linear,
|
||||||
|
down_proj: Linear,
|
||||||
|
act_fn: candle_nn::Activation,
|
||||||
|
i_size: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Mlp {
|
||||||
|
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let hidden_size = cfg.hidden_size;
|
||||||
|
let i_size = cfg.intermediate_size;
|
||||||
|
let gate_up_proj = linear(hidden_size, 2 * i_size, vb.pp("gate_up_proj"))?;
|
||||||
|
let down_proj = linear(i_size, hidden_size, vb.pp("down_proj"))?;
|
||||||
|
Ok(Self {
|
||||||
|
gate_up_proj,
|
||||||
|
down_proj,
|
||||||
|
act_fn: cfg.hidden_act,
|
||||||
|
i_size,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Module for Mlp {
|
||||||
|
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||||
|
let up_states = xs.apply(&self.gate_up_proj)?;
|
||||||
|
let gate = up_states.narrow(D::Minus1, 0, self.i_size)?;
|
||||||
|
let up_states = up_states.narrow(D::Minus1, self.i_size, self.i_size)?;
|
||||||
|
let up_states = (up_states * gate.apply(&self.act_fn))?;
|
||||||
|
up_states.apply(&self.down_proj)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
struct DecoderLayer {
|
||||||
|
self_attn: Attention,
|
||||||
|
mlp: Mlp,
|
||||||
|
input_layernorm: RmsNorm,
|
||||||
|
post_attention_layernorm: RmsNorm,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl DecoderLayer {
|
||||||
|
fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
|
||||||
|
let mlp = Mlp::new(cfg, vb.pp("mlp"))?;
|
||||||
|
let input_layernorm =
|
||||||
|
RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
|
||||||
|
let post_attention_layernorm = RmsNorm::new(
|
||||||
|
cfg.hidden_size,
|
||||||
|
cfg.rms_norm_eps,
|
||||||
|
vb.pp("post_attention_layernorm"),
|
||||||
|
)?;
|
||||||
|
Ok(Self {
|
||||||
|
self_attn,
|
||||||
|
mlp,
|
||||||
|
input_layernorm,
|
||||||
|
post_attention_layernorm,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn forward(
|
||||||
|
&mut self,
|
||||||
|
xs: &Tensor,
|
||||||
|
attention_mask: Option<&Tensor>,
|
||||||
|
seqlen_offset: usize,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let residual = xs;
|
||||||
|
let xs = self.input_layernorm.forward(xs)?;
|
||||||
|
let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
|
||||||
|
let xs = (xs + residual)?;
|
||||||
|
let residual = &xs;
|
||||||
|
let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
|
||||||
|
residual + xs
|
||||||
|
}
|
||||||
|
|
||||||
|
fn clear_kv_cache(&mut self) {
|
||||||
|
self.self_attn.clear_kv_cache()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Clone)]
|
||||||
|
pub struct Model {
|
||||||
|
embed_tokens: candle_nn::Embedding,
|
||||||
|
layers: Vec<DecoderLayer>,
|
||||||
|
norm: RmsNorm,
|
||||||
|
lm_head: Linear,
|
||||||
|
device: Device,
|
||||||
|
dtype: DType,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Model {
|
||||||
|
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||||
|
let vb_m = vb.pp("model");
|
||||||
|
let embed_tokens =
|
||||||
|
candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
|
||||||
|
let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
|
||||||
|
let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
|
||||||
|
let vb_l = vb_m.pp("layers");
|
||||||
|
for layer_idx in 0..cfg.num_hidden_layers {
|
||||||
|
let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
|
||||||
|
layers.push(layer)
|
||||||
|
}
|
||||||
|
let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
|
||||||
|
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||||
|
Ok(Self {
|
||||||
|
embed_tokens,
|
||||||
|
layers,
|
||||||
|
norm,
|
||||||
|
lm_head,
|
||||||
|
device: vb.device().clone(),
|
||||||
|
dtype: vb.dtype(),
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn prepare_decoder_attention_mask(
|
||||||
|
&self,
|
||||||
|
b_size: usize,
|
||||||
|
tgt_len: usize,
|
||||||
|
seqlen_offset: usize,
|
||||||
|
) -> Result<Tensor> {
|
||||||
|
let mask: Vec<_> = (0..tgt_len)
|
||||||
|
.flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
|
||||||
|
.collect();
|
||||||
|
let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
|
||||||
|
let mask = if seqlen_offset > 0 {
|
||||||
|
let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
|
||||||
|
Tensor::cat(&[&mask0, &mask], D::Minus1)?
|
||||||
|
} else {
|
||||||
|
mask
|
||||||
|
};
|
||||||
|
mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
|
||||||
|
.to_dtype(self.dtype)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
|
||||||
|
let (b_size, seq_len) = input_ids.dims2()?;
|
||||||
|
let attention_mask = if seq_len <= 1 {
|
||||||
|
None
|
||||||
|
} else {
|
||||||
|
let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
|
||||||
|
Some(mask)
|
||||||
|
};
|
||||||
|
let mut xs = self.embed_tokens.forward(input_ids)?;
|
||||||
|
for layer in self.layers.iter_mut() {
|
||||||
|
xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
|
||||||
|
}
|
||||||
|
xs.narrow(1, seq_len - 1, 1)?
|
||||||
|
.apply(&self.norm)?
|
||||||
|
.apply(&self.lm_head)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn clear_kv_cache(&mut self) {
|
||||||
|
for layer in self.layers.iter_mut() {
|
||||||
|
layer.clear_kv_cache()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
Reference in New Issue
Block a user