Support for MQA for llama v2. (#205)

* Support for MQA for llama v2.

* More llama-v2.

* Move the rotary embedding precomputation in the cache.

* Add a v2 flag.

* Use the hf model.
This commit is contained in:
Laurent Mazare
2023-07-20 07:39:04 +02:00
committed by GitHub
parent c34f932319
commit 12d6dc018d
3 changed files with 123 additions and 110 deletions

View File

@ -15,7 +15,7 @@ extern crate intel_mkl_src;
use anyhow::{Error as E, Result};
use clap::Parser;
use candle::{DType, Device, Tensor, D};
use candle::{DType, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
@ -76,23 +76,6 @@ Whate'er it bodes, henceforward will I bear
Upon my target three fair-shining suns.
";
fn precompute_freqs_cis(config: &Config, device: &Device) -> Result<Tensor> {
let n_elem = config.n_embd / config.n_head;
let theta: Vec<_> = (0..n_elem)
.step_by(2)
.map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32))
.collect();
let theta = Tensor::new(theta.as_slice(), device)?;
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
.to_dtype(DType::F32)?
.reshape((MAX_SEQ_LEN, 1))?
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
let shape = [1, MAX_SEQ_LEN, n_elem / 2, 1];
let idx_theta_cos = idx_theta.cos()?.reshape(&shape)?;
let idx_theta_sin = idx_theta.sin()?.reshape(&shape)?;
Ok(Tensor::cat(&[&idx_theta_cos, &idx_theta_sin], D::Minus1)?)
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
@ -127,6 +110,12 @@ struct Args {
/// Use f32 computations rather than f16.
#[arg(long)]
use_f32: bool,
#[arg(long)]
model_id: Option<String>,
#[arg(long)]
v2: bool,
}
fn main() -> Result<()> {
@ -136,7 +125,7 @@ fn main() -> Result<()> {
let device = candle_examples::device(args.cpu)?;
let config = Config::config_7b();
let cache = model::Cache::new(!args.no_kv_cache, &config, &device);
let cache = model::Cache::new(!args.no_kv_cache, &config, &device)?;
let dtype = if args.use_f32 { DType::F32 } else { DType::F16 };
let (llama, tokenizer_filename) = match args.npy {
Some(filename) => {
@ -146,8 +135,15 @@ fn main() -> Result<()> {
}
None => {
let api = Api::new()?;
let repo = Repo::new("Narsil/amall-7b".to_string(), RepoType::Model);
println!("loading the model weights");
let model_id = args.model_id.unwrap_or_else(|| {
if args.v2 {
"meta-llama/Llama-2-7b-hf".to_string()
} else {
"Narsil/amall-7b".to_string()
}
});
println!("loading the model weights from {model_id}");
let repo = Repo::new(model_id, RepoType::Model);
let tokenizer_filename = api.get(&repo, "tokenizer.json")?;
let mut filenames = vec![];
for rfilename in [
@ -180,8 +176,6 @@ fn main() -> Result<()> {
.get_ids()
.to_vec();
println!("pre-computing the positional embeddings");
let freqs_cis = precompute_freqs_cis(&config, &device)?;
println!("starting the inference loop");
let mut logits_processor = LogitsProcessor::new(args.seed, args.temperature);
let mut new_tokens = vec![];
@ -196,12 +190,7 @@ fn main() -> Result<()> {
};
let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?.unsqueeze(0)?;
let freqs_cis = if cache.use_kv_cache {
freqs_cis.narrow(1, index_pos, ctxt.len())?
} else {
freqs_cis.clone()
};
let logits = llama.forward(&input, &freqs_cis)?;
let logits = llama.forward(&input, index_pos)?;
let logits = logits.squeeze(0)?;
index_pos += ctxt.len();