mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 19:18:50 +00:00
More Model Module Docs (#2623)
* dinov2 * add another example * ad dinov2reg4 * eva2 * efficientvit * moondream * update t5 * update t5 * rwkv * stable diffusion docs * add wasm link * add segment_anything * adjsut for clippy * ignore bertdoc * dinov2 ignore * update block to be text * remove the rust blocks for the moment * bump python to 3.11 * add a setup-python step * add py311 to test as well
This commit is contained in:
@ -7,56 +7,6 @@
|
||||
//! - Upstream [Github repo](https://github.com/google-research/bert).
|
||||
//! - See bert in [candle-examples](https://github.com/huggingface/candle/tree/main/candle-examples/) for runnable code
|
||||
//!
|
||||
//! ```no_run
|
||||
//! // for sentence embeddings
|
||||
//! # use candle_core::Tensor;
|
||||
//! # use candle_nn::{VarBuilder, Module};
|
||||
//! # fn main() -> candle_core::Result<()> {
|
||||
//! # let model = todo!();
|
||||
//! # let prompt = "Here is a test sentence";
|
||||
//! let embeddings = model.forward(prompt)?;
|
||||
//! // Returns tensor of shape [1, 7, 384]
|
||||
//! println!("{embeddings}");
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//!
|
||||
//! // Different models can be loaded using the model ID
|
||||
//! # use candle_core::Tensor;
|
||||
//! # use candle_nn::{VarBuilder, Module};
|
||||
//! # fn main() -> candle_core::Result<()> {
|
||||
//! # let vb = todo!();
|
||||
//! # let config = todo!();
|
||||
//! let model = BertModel::load(vb, &config )?;
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//!
|
||||
//! // Gelu approximation
|
||||
//! // You can get a speedup by configuring the model
|
||||
//! // to use an approximation of the gelu activation:
|
||||
//! # use candle_core::Tensor;
|
||||
//! # use candle_nn::{VarBuilder, Module};
|
||||
//! # fn main() -> candle_core::Result<()> {
|
||||
//! # let mut config = todo!();
|
||||
//! config.hidden_act = HiddenAct::GeluApproximate;
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//!
|
||||
//! // Similarities
|
||||
//! // Bert can compute sentence embeddings which can then be used to calculate
|
||||
//! // semantic similarities between sentences through cosine similarity scoring.
|
||||
//! // The sentence embeddings are computed using average pooling across all tokens.
|
||||
//! # use candle_core::Tensor;
|
||||
//! # use candle_nn::{VarBuilder, Module};
|
||||
//! # fn main() -> candle_core::Result<()> {
|
||||
//! # let model = todo!();
|
||||
//! let sentence1 = "The new movie is awesome";
|
||||
//! let sentence2 = "The new movie is so great";
|
||||
//! let emb1 = model.forward(sentence1)?;
|
||||
//! let emb2 = model.forward(sentence2)?;
|
||||
//! # Ok(())
|
||||
//! # }
|
||||
//! ```
|
||||
//!
|
||||
use super::with_tracing::{layer_norm, linear, LayerNorm, Linear};
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use candle_nn::{embedding, Embedding, Module, VarBuilder};
|
||||
|
Reference in New Issue
Block a user