mirror of
https://github.com/huggingface/candle.git
synced 2025-06-20 04:00:28 +00:00
More Model Module Docs (#2623)
* dinov2 * add another example * ad dinov2reg4 * eva2 * efficientvit * moondream * update t5 * update t5 * rwkv * stable diffusion docs * add wasm link * add segment_anything * adjsut for clippy * ignore bertdoc * dinov2 ignore * update block to be text * remove the rust blocks for the moment * bump python to 3.11 * add a setup-python step * add py311 to test as well
This commit is contained in:
@ -1,8 +1,42 @@
|
||||
//! Implementation of the DINOv2 models from Meta Research.
|
||||
//!
|
||||
//! See:
|
||||
//! - DINOv2: ["DINOv2: Learning Robust Visual Features without Supervision"](https://github.com/facebookresearch/dinov2)
|
||||
//! This module implements the DINOv2 vision transformer model from Meta AI Research.
|
||||
//! DINOv2 is a self-supervised learning model that can learn visual features
|
||||
//! without using any labeled data. See: ["DINOv2: Learning Robust Visual Features without Supervision"](https://github.com/facebookresearch/dinov2)
|
||||
//!
|
||||
//! ## Running an example with color map and CUDA
|
||||
//!
|
||||
//! ```bash
|
||||
//! cargo run \
|
||||
//! --features cuda,depth_anything_v2 \
|
||||
//! --package candle-examples \
|
||||
//! --example depth_anything_v2 \
|
||||
//! -- --color-map \
|
||||
//! --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
//! ```
|
||||
//!
|
||||
//! ## Running as an ImageNet classifier
|
||||
//!
|
||||
//! The model returns the probability for the image to belong to each of the 1000 ImageNet categories.
|
||||
//!
|
||||
//! <div align=center>
|
||||
//! <img src="https://github.com/huggingface/candle/raw/main/candle-examples/examples/yolo-v8/assets/bike.jpg" alt="" width=640>
|
||||
//! </div>
|
||||
//!
|
||||
//! ```bash
|
||||
//! cargo run \
|
||||
//! --example dinov2 \
|
||||
//! --release \
|
||||
//! -- --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
//!
|
||||
//! > mountain bike, all-terrain bike, off-roader: 43.67%
|
||||
//! > bicycle-built-for-two, tandem bicycle, tandem: 33.20%
|
||||
//! > crash helmet : 13.23%
|
||||
//! > unicycle, monocycle : 2.44%
|
||||
//! > maillot : 2.42%
|
||||
//! ```
|
||||
//!
|
||||
|
||||
use candle::{IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
|
||||
|
||||
|
Reference in New Issue
Block a user