mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
Main diffusion loop for the SD example. (#332)
This commit is contained in:
@ -294,7 +294,7 @@ impl ClipTextTransformer {
|
||||
}
|
||||
|
||||
impl ClipTextTransformer {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
pub fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let (bsz, seq_len) = xs.dims2()?;
|
||||
let xs = self.embeddings.forward(xs)?;
|
||||
let causal_attention_mask = Self::build_causal_attention_mask(bsz, seq_len, xs.device())?;
|
||||
|
@ -100,8 +100,8 @@ impl DDIMScheduler {
|
||||
|
||||
/// Ensures interchangeability with schedulers that need to scale the denoising model input
|
||||
/// depending on the current timestep.
|
||||
pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Tensor {
|
||||
sample
|
||||
pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Result<Tensor> {
|
||||
Ok(sample)
|
||||
}
|
||||
|
||||
/// Performs a backward step during inference.
|
||||
|
@ -13,21 +13,255 @@ mod unet_2d_blocks;
|
||||
mod utils;
|
||||
mod vae;
|
||||
|
||||
use anyhow::Result;
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{DType, Device, Tensor};
|
||||
use clap::Parser;
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
const GUIDANCE_SCALE: f64 = 7.5;
|
||||
|
||||
#[derive(Parser)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// The prompt to be used for image generation.
|
||||
#[arg(
|
||||
long,
|
||||
default_value = "A very realistic photo of a rusty robot walking on a sandy beach"
|
||||
)]
|
||||
prompt: String,
|
||||
|
||||
#[arg(long, default_value = "")]
|
||||
uncond_prompt: String,
|
||||
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// The height in pixels of the generated image.
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
height: Option<usize>,
|
||||
|
||||
/// The width in pixels of the generated image.
|
||||
#[arg(long)]
|
||||
width: Option<usize>,
|
||||
|
||||
/// The UNet weight file, in .ot or .safetensors format.
|
||||
#[arg(long, value_name = "FILE")]
|
||||
unet_weights: Option<String>,
|
||||
|
||||
/// The CLIP weight file, in .ot or .safetensors format.
|
||||
#[arg(long, value_name = "FILE")]
|
||||
clip_weights: Option<String>,
|
||||
|
||||
/// The VAE weight file, in .ot or .safetensors format.
|
||||
#[arg(long, value_name = "FILE")]
|
||||
vae_weights: Option<String>,
|
||||
|
||||
#[arg(
|
||||
long,
|
||||
value_name = "FILE",
|
||||
default_value = "data/bpe_simple_vocab_16e6.txt"
|
||||
)]
|
||||
/// The file specifying the vocabulary to used for tokenization.
|
||||
vocab_file: String,
|
||||
|
||||
/// The size of the sliced attention or 0 for automatic slicing (disabled by default)
|
||||
#[arg(long)]
|
||||
sliced_attention_size: Option<usize>,
|
||||
|
||||
/// The number of steps to run the diffusion for.
|
||||
#[arg(long, default_value_t = 30)]
|
||||
n_steps: usize,
|
||||
|
||||
/// The number of samples to generate.
|
||||
#[arg(long, default_value_t = 1)]
|
||||
num_samples: i64,
|
||||
|
||||
/// The name of the final image to generate.
|
||||
#[arg(long, value_name = "FILE", default_value = "sd_final.png")]
|
||||
final_image: String,
|
||||
|
||||
#[arg(long, value_enum, default_value = "v2-1")]
|
||||
sd_version: StableDiffusionVersion,
|
||||
|
||||
/// Generate intermediary images at each step.
|
||||
#[arg(long, action)]
|
||||
intermediary_images: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, clap::ValueEnum)]
|
||||
enum StableDiffusionVersion {
|
||||
V1_5,
|
||||
V2_1,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
fn clip_weights(&self) -> String {
|
||||
match &self.clip_weights {
|
||||
Some(w) => w.clone(),
|
||||
None => match self.sd_version {
|
||||
StableDiffusionVersion::V1_5 => "data/pytorch_model.safetensors".to_string(),
|
||||
StableDiffusionVersion::V2_1 => "data/clip_v2.1.safetensors".to_string(),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn vae_weights(&self) -> String {
|
||||
match &self.vae_weights {
|
||||
Some(w) => w.clone(),
|
||||
None => match self.sd_version {
|
||||
StableDiffusionVersion::V1_5 => "data/vae.safetensors".to_string(),
|
||||
StableDiffusionVersion::V2_1 => "data/vae_v2.1.safetensors".to_string(),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn unet_weights(&self) -> String {
|
||||
match &self.unet_weights {
|
||||
Some(w) => w.clone(),
|
||||
None => match self.sd_version {
|
||||
StableDiffusionVersion::V1_5 => "data/unet.safetensors".to_string(),
|
||||
StableDiffusionVersion::V2_1 => "data/unet_v2.1.safetensors".to_string(),
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn output_filename(
|
||||
basename: &str,
|
||||
sample_idx: i64,
|
||||
num_samples: i64,
|
||||
timestep_idx: Option<usize>,
|
||||
) -> String {
|
||||
let filename = if num_samples > 1 {
|
||||
match basename.rsplit_once('.') {
|
||||
None => format!("{basename}.{sample_idx}.png"),
|
||||
Some((filename_no_extension, extension)) => {
|
||||
format!("{filename_no_extension}.{sample_idx}.{extension}")
|
||||
}
|
||||
}
|
||||
} else {
|
||||
basename.to_string()
|
||||
};
|
||||
match timestep_idx {
|
||||
None => filename,
|
||||
Some(timestep_idx) => match filename.rsplit_once('.') {
|
||||
None => format!("{filename}-{timestep_idx}.png"),
|
||||
Some((filename_no_extension, extension)) => {
|
||||
format!("{filename_no_extension}-{timestep_idx}.{extension}")
|
||||
}
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
fn run(args: Args) -> Result<()> {
|
||||
let clip_weights = args.clip_weights();
|
||||
let vae_weights = args.vae_weights();
|
||||
let unet_weights = args.unet_weights();
|
||||
let Args {
|
||||
prompt,
|
||||
uncond_prompt,
|
||||
cpu,
|
||||
height,
|
||||
width,
|
||||
n_steps,
|
||||
vocab_file,
|
||||
final_image,
|
||||
sliced_attention_size,
|
||||
num_samples,
|
||||
sd_version,
|
||||
..
|
||||
} = args;
|
||||
let sd_config = match sd_version {
|
||||
StableDiffusionVersion::V1_5 => {
|
||||
stable_diffusion::StableDiffusionConfig::v1_5(sliced_attention_size, height, width)
|
||||
}
|
||||
StableDiffusionVersion::V2_1 => {
|
||||
stable_diffusion::StableDiffusionConfig::v2_1(sliced_attention_size, height, width)
|
||||
}
|
||||
};
|
||||
|
||||
let scheduler = sd_config.build_scheduler(n_steps)?;
|
||||
let device = candle_examples::device(cpu)?;
|
||||
|
||||
let tokenizer = Tokenizer::from_file(vocab_file).map_err(E::msg)?;
|
||||
println!("Running with prompt \"{prompt}\".");
|
||||
let tokens = tokenizer
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let tokens = Tensor::new(tokens.as_slice(), &device)?.unsqueeze(0)?;
|
||||
|
||||
let uncond_tokens = tokenizer
|
||||
.encode(uncond_prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let uncond_tokens = Tensor::new(uncond_tokens.as_slice(), &device)?.unsqueeze(0)?;
|
||||
|
||||
println!("Building the Clip transformer.");
|
||||
let text_model = sd_config.build_clip_transformer(&clip_weights, &device)?;
|
||||
let text_embeddings = text_model.forward(&tokens)?;
|
||||
let uncond_embeddings = text_model.forward(&uncond_tokens)?;
|
||||
let text_embeddings = Tensor::cat(&[uncond_embeddings, text_embeddings], 0)?;
|
||||
|
||||
println!("Building the autoencoder.");
|
||||
let vae = sd_config.build_vae(&vae_weights, &device)?;
|
||||
println!("Building the unet.");
|
||||
let unet = sd_config.build_unet(&unet_weights, &device, 4)?;
|
||||
|
||||
let bsize = 1;
|
||||
for idx in 0..num_samples {
|
||||
let mut latents = Tensor::randn(
|
||||
0f32,
|
||||
1f32,
|
||||
(bsize, 4, sd_config.height / 8, sd_config.width / 8),
|
||||
&device,
|
||||
)?;
|
||||
|
||||
// scale the initial noise by the standard deviation required by the scheduler
|
||||
latents = (latents * scheduler.init_noise_sigma())?;
|
||||
|
||||
for (timestep_index, ×tep) in scheduler.timesteps().iter().enumerate() {
|
||||
println!("Timestep {timestep_index}/{n_steps}");
|
||||
let latent_model_input = Tensor::cat(&[&latents, &latents], 0)?;
|
||||
|
||||
let latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)?;
|
||||
let noise_pred =
|
||||
unet.forward(&latent_model_input, timestep as f64, &text_embeddings)?;
|
||||
let noise_pred = noise_pred.chunk(2, 0)?;
|
||||
let (noise_pred_uncond, noise_pred_text) = (&noise_pred[0], &noise_pred[1]);
|
||||
let noise_pred =
|
||||
(noise_pred_uncond + ((noise_pred_text - noise_pred_uncond)? * GUIDANCE_SCALE)?)?;
|
||||
latents = scheduler.step(&noise_pred, timestep, &latents)?;
|
||||
|
||||
if args.intermediary_images {
|
||||
let image = vae.decode(&(&latents / 0.18215)?)?;
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let _image = (image * 255.)?.to_dtype(DType::U8);
|
||||
let _image_filename =
|
||||
output_filename(&final_image, idx + 1, num_samples, Some(timestep_index + 1));
|
||||
// TODO: save igame
|
||||
}
|
||||
}
|
||||
|
||||
println!(
|
||||
"Generating the final image for sample {}/{}.",
|
||||
idx + 1,
|
||||
num_samples
|
||||
);
|
||||
let image = vae.decode(&(&latents / 0.18215)?)?;
|
||||
// TODO: Add the clamping between 0 and 1.
|
||||
let image = ((image / 2.)? + 0.5)?.to_device(&Device::Cpu)?;
|
||||
let _image = (image * 255.)?.to_dtype(DType::U8);
|
||||
let _image_filename = output_filename(&final_image, idx + 1, num_samples, None);
|
||||
// TODO: save image.
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
let _args = Args::parse();
|
||||
Ok(())
|
||||
let args = Args::parse();
|
||||
run(args)
|
||||
}
|
||||
|
Reference in New Issue
Block a user