mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
Merge pull request #439 from huggingface/training_hub_dataset
[Book] Add small error management + start training (with generic dataset inclusion).
This commit is contained in:
@ -138,12 +138,20 @@ struct Args {
|
||||
/// The file where to load the trained weights from, in safetensors format.
|
||||
#[arg(long)]
|
||||
load: Option<String>,
|
||||
|
||||
/// The file where to load the trained weights from, in safetensors format.
|
||||
#[arg(long)]
|
||||
local_mnist: Option<String>,
|
||||
}
|
||||
|
||||
pub fn main() -> anyhow::Result<()> {
|
||||
let args = Args::parse();
|
||||
// Load the dataset
|
||||
let m = candle_datasets::vision::mnist::load_dir("data")?;
|
||||
let m = if let Some(directory) = args.local_mnist {
|
||||
candle_datasets::vision::mnist::load_dir(directory)?
|
||||
} else {
|
||||
candle_datasets::vision::mnist::load()?
|
||||
};
|
||||
println!("train-images: {:?}", m.train_images.shape());
|
||||
println!("train-labels: {:?}", m.train_labels.shape());
|
||||
println!("test-images: {:?}", m.test_images.shape());
|
||||
|
@ -52,102 +52,3 @@ pub fn save_image<P: AsRef<std::path::Path>>(img: &Tensor, p: P) -> Result<()> {
|
||||
image.save(p).map_err(candle::Error::wrap)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
// NOTE: Waiting on https://github.com/rust-lang/mdBook/pull/1856
|
||||
#[rustfmt::skip]
|
||||
#[tokio::test]
|
||||
async fn book_hub_1() {
|
||||
// ANCHOR: book_hub_1
|
||||
use candle::Device;
|
||||
use hf_hub::api::tokio::Api;
|
||||
|
||||
let api = Api::new().unwrap();
|
||||
let repo = api.model("bert-base-uncased".to_string());
|
||||
|
||||
let weights_filename = repo.get("model.safetensors").await.unwrap();
|
||||
|
||||
let weights = candle::safetensors::load(weights_filename, &Device::Cpu).unwrap();
|
||||
// ANCHOR_END: book_hub_1
|
||||
assert_eq!(weights.len(), 206);
|
||||
}
|
||||
|
||||
#[rustfmt::skip]
|
||||
#[test]
|
||||
fn book_hub_2() {
|
||||
// ANCHOR: book_hub_2
|
||||
use candle::Device;
|
||||
use hf_hub::api::sync::Api;
|
||||
use memmap2::Mmap;
|
||||
use std::fs;
|
||||
|
||||
let api = Api::new().unwrap();
|
||||
let repo = api.model("bert-base-uncased".to_string());
|
||||
let weights_filename = repo.get("model.safetensors").unwrap();
|
||||
|
||||
let file = fs::File::open(weights_filename).unwrap();
|
||||
let mmap = unsafe { Mmap::map(&file).unwrap() };
|
||||
let weights = candle::safetensors::load_buffer(&mmap[..], &Device::Cpu).unwrap();
|
||||
// ANCHOR_END: book_hub_2
|
||||
assert_eq!(weights.len(), 206);
|
||||
}
|
||||
|
||||
#[rustfmt::skip]
|
||||
#[test]
|
||||
fn book_hub_3() {
|
||||
// ANCHOR: book_hub_3
|
||||
use candle::{DType, Device, Tensor};
|
||||
use hf_hub::api::sync::Api;
|
||||
use memmap2::Mmap;
|
||||
use safetensors::slice::IndexOp;
|
||||
use safetensors::SafeTensors;
|
||||
use std::fs;
|
||||
|
||||
let api = Api::new().unwrap();
|
||||
let repo = api.model("bert-base-uncased".to_string());
|
||||
let weights_filename = repo.get("model.safetensors").unwrap();
|
||||
|
||||
let file = fs::File::open(weights_filename).unwrap();
|
||||
let mmap = unsafe { Mmap::map(&file).unwrap() };
|
||||
|
||||
// Use safetensors directly
|
||||
let tensors = SafeTensors::deserialize(&mmap[..]).unwrap();
|
||||
let view = tensors
|
||||
.tensor("bert.encoder.layer.0.attention.self.query.weight")
|
||||
.unwrap();
|
||||
|
||||
// We're going to load shard with rank 1, within a world_size of 4
|
||||
// We're going to split along dimension 0 doing VIEW[start..stop, :]
|
||||
let rank = 1;
|
||||
let world_size = 4;
|
||||
let dim = 0;
|
||||
let dtype = view.dtype();
|
||||
let mut tp_shape = view.shape().to_vec();
|
||||
let size = tp_shape[0];
|
||||
|
||||
if size % world_size != 0 {
|
||||
panic!("The dimension is not divisble by `world_size`");
|
||||
}
|
||||
let block_size = size / world_size;
|
||||
let start = rank * block_size;
|
||||
let stop = (rank + 1) * block_size;
|
||||
|
||||
// Everything is expressed in tensor dimension
|
||||
// bytes offsets is handled automatically for safetensors.
|
||||
|
||||
let iterator = view.slice(start..stop).unwrap();
|
||||
|
||||
tp_shape[dim] = block_size;
|
||||
|
||||
// Convert safetensors Dtype to candle DType
|
||||
let dtype: DType = dtype.try_into().unwrap();
|
||||
|
||||
// TODO: Implement from_buffer_iterator so we can skip the extra CPU alloc.
|
||||
let raw: Vec<u8> = iterator.into_iter().flatten().cloned().collect();
|
||||
let tp_tensor = Tensor::from_raw_buffer(&raw, dtype, &tp_shape, &Device::Cpu).unwrap();
|
||||
// ANCHOR_END: book_hub_3
|
||||
assert_eq!(view.shape(), &[768, 768]);
|
||||
assert_eq!(tp_tensor.dims(), &[192, 768]);
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user