mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 19:47:12 +00:00
TP sharding v2
This commit is contained in:
465
candle-examples/examples/llama_multiprocess/model.rs
Normal file
465
candle-examples/examples/llama_multiprocess/model.rs
Normal file
@ -0,0 +1,465 @@
|
||||
use candle::{DType, Device, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{Embedding, Linear, VarBuilder};
|
||||
use cudarc::driver::safe::CudaSlice;
|
||||
use cudarc::nccl::safe::{Comm, ReduceOp};
|
||||
use half::f16;
|
||||
use std::collections::HashMap;
|
||||
use std::rc::Rc;
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use super::MAX_SEQ_LEN;
|
||||
|
||||
struct TensorParallelColumnLinear {
|
||||
linear: Linear,
|
||||
}
|
||||
|
||||
impl TensorParallelColumnLinear {
|
||||
fn new(linear: Linear) -> Self {
|
||||
Self { linear }
|
||||
}
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
self.linear.forward(x)
|
||||
}
|
||||
}
|
||||
|
||||
struct TensorParallelRowLinear {
|
||||
linear: Linear,
|
||||
comm: Rc<Comm>,
|
||||
}
|
||||
|
||||
fn all_reduce_sum(x: &Tensor, comm: &Rc<Comm>) -> Result<Tensor> {
|
||||
Ok(x.clone())
|
||||
// let n = x.shape().elem_count();
|
||||
// let cuda_slice: CudaSlice<f16> = x.try_into()?;
|
||||
// let dev = cuda_slice.device();
|
||||
// let mut slice_receive = dev.alloc_zeros(n).unwrap();
|
||||
// comm.all_reduce(cuda_slice, &mut slice_receive, &ReduceOp::Sum).unwrap();
|
||||
// Tensor::from_raw_storage(slice_receive, x.shape())
|
||||
}
|
||||
|
||||
impl TensorParallelRowLinear {
|
||||
fn new(linear: Linear, comm: Rc<Comm>) -> Self {
|
||||
Self { linear, comm }
|
||||
}
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x = self.linear.forward(x)?;
|
||||
all_reduce_sum(&x, &self.comm)
|
||||
}
|
||||
}
|
||||
|
||||
impl TensorParallelColumnLinear {
|
||||
fn load(vb: VarBuilder, comm: Rc<Comm>) -> Result<Self> {
|
||||
let rank = comm.rank();
|
||||
let size = comm.world_size();
|
||||
let weight = vb.get_sharded("weight", 0, rank, size)?;
|
||||
Ok(Self::new(Linear::new(weight, None)))
|
||||
}
|
||||
|
||||
fn load_multi(vb: VarBuilder, prefixes: &[&str], comm: Rc<Comm>) -> Result<Self> {
|
||||
let rank = comm.rank();
|
||||
let size = comm.world_size();
|
||||
let weights: Vec<_> = prefixes
|
||||
.iter()
|
||||
.map(|p| vb.pp(p).get_sharded("weight", 0, rank, size).unwrap())
|
||||
.collect();
|
||||
let weight = Tensor::cat(&weights, 0)?;
|
||||
Ok(Self::new(Linear::new(weight, None)))
|
||||
}
|
||||
}
|
||||
|
||||
impl TensorParallelRowLinear {
|
||||
fn load(vb: VarBuilder, comm: Rc<Comm>) -> Result<Self> {
|
||||
let rank = comm.rank();
|
||||
let size = comm.world_size();
|
||||
let weight = vb.get_sharded("weight", 1, rank, size)?;
|
||||
Ok(Self::new(Linear::new(weight, None), comm.clone()))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Config {
|
||||
pub hidden_size: usize,
|
||||
pub intermediate_size: usize,
|
||||
pub vocab_size: usize,
|
||||
pub n_layer: usize,
|
||||
pub n_head: usize,
|
||||
pub n_embd: usize,
|
||||
pub n_key_value_head: usize,
|
||||
}
|
||||
|
||||
impl Config {
|
||||
pub fn config_7b() -> Self {
|
||||
Self {
|
||||
hidden_size: 4096,
|
||||
intermediate_size: 11008,
|
||||
vocab_size: 32000,
|
||||
n_layer: 32,
|
||||
n_head: 32,
|
||||
n_embd: 4096,
|
||||
n_key_value_head: 32,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
pub struct Cache {
|
||||
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
|
||||
pub use_kv_cache: bool,
|
||||
#[allow(clippy::type_complexity)]
|
||||
kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
|
||||
cos: Tensor,
|
||||
sin: Tensor,
|
||||
device: Device,
|
||||
}
|
||||
|
||||
impl Cache {
|
||||
pub fn new(use_kv_cache: bool, config: &Config, device: &Device) -> Result<Self> {
|
||||
// precompute freqs_cis
|
||||
let n_elem = config.n_embd / config.n_head;
|
||||
let theta: Vec<_> = (0..n_elem)
|
||||
.step_by(2)
|
||||
.map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32))
|
||||
.collect();
|
||||
let theta = Tensor::new(theta.as_slice(), device)?;
|
||||
let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
|
||||
.to_dtype(DType::F32)?
|
||||
.reshape((MAX_SEQ_LEN, 1))?
|
||||
.matmul(&theta.reshape((1, theta.elem_count()))?)?;
|
||||
// This is different from the paper, see:
|
||||
// https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
|
||||
let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
|
||||
let cos = idx_theta.cos()?;
|
||||
let sin = idx_theta.sin()?;
|
||||
Ok(Self {
|
||||
masks: Arc::new(Mutex::new(HashMap::new())),
|
||||
use_kv_cache,
|
||||
kvs: Arc::new(Mutex::new(vec![None; config.n_layer])),
|
||||
device: device.clone(),
|
||||
cos,
|
||||
sin,
|
||||
})
|
||||
}
|
||||
|
||||
fn mask(&self, t: usize) -> Result<Tensor> {
|
||||
let mut masks = self.masks.lock().unwrap();
|
||||
if let Some(mask) = masks.get(&t) {
|
||||
Ok(mask.clone())
|
||||
} else {
|
||||
// TODO: If we support bool or u8 tensors, this would be better.
|
||||
let mask: Vec<_> = (0..t)
|
||||
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
|
||||
.collect();
|
||||
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
|
||||
masks.insert(t, mask.clone());
|
||||
Ok(mask)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn silu(xs: &Tensor) -> Result<Tensor> {
|
||||
xs / (xs.neg()?.exp()? + 1.0)?
|
||||
}
|
||||
|
||||
fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
|
||||
let weight = vb.get((size2, size1), "weight")?;
|
||||
Ok(Linear::new(weight, None))
|
||||
}
|
||||
|
||||
fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
|
||||
let embeddings = vb.get((cfg.vocab_size, cfg.hidden_size), "weight")?;
|
||||
Ok(Embedding::new(embeddings, cfg.hidden_size))
|
||||
}
|
||||
|
||||
struct RmsNorm {
|
||||
scale: Tensor,
|
||||
}
|
||||
|
||||
impl RmsNorm {
|
||||
fn load(size: usize, vb: VarBuilder) -> Result<Self> {
|
||||
let scale = vb.get(size, "weight")?;
|
||||
Ok(Self::new(scale))
|
||||
}
|
||||
|
||||
fn new(scale: Tensor) -> Self {
|
||||
Self { scale }
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let in_dtype = x.dtype();
|
||||
// This is a no-op if x's dtype is already f32.
|
||||
let x = x.to_dtype(DType::F32)?;
|
||||
let (b_sz, seq_len, hidden_size) = x.shape().r3()?;
|
||||
let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?;
|
||||
let norm_x = norm_x.broadcast_as((b_sz, seq_len, hidden_size))?;
|
||||
let x_normed = (x / (norm_x + 1e-6)?.sqrt()?)?;
|
||||
let size = self.scale.shape().r1()?;
|
||||
let scale = self
|
||||
.scale
|
||||
.to_dtype(DType::F32)?
|
||||
.broadcast_as((b_sz, seq_len, size))?;
|
||||
let x = (scale * x_normed)?;
|
||||
let x = x.to_dtype(in_dtype)?;
|
||||
Ok(x)
|
||||
}
|
||||
}
|
||||
|
||||
struct CausalSelfAttention {
|
||||
qkv_proj: TensorParallelColumnLinear,
|
||||
o_proj: TensorParallelRowLinear,
|
||||
n_head: usize,
|
||||
n_key_value_head: usize,
|
||||
head_dim: usize,
|
||||
cache: Cache,
|
||||
}
|
||||
|
||||
impl CausalSelfAttention {
|
||||
fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (b_sz, _, seq_len, n_embd) = x.shape().r4()?;
|
||||
let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
|
||||
let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
|
||||
let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd))?;
|
||||
let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd))?;
|
||||
let x1 = x.narrow(D::Minus1, 0, n_embd / 2)?;
|
||||
let x2 = x.narrow(D::Minus1, n_embd / 2, n_embd / 2)?;
|
||||
let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
|
||||
let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
|
||||
Ok(rope)
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
let x_dtype = x.dtype();
|
||||
let (b_sz, seq_len, _) = x.shape().r3()?;
|
||||
|
||||
let qkv = self.qkv_proj.forward(x)?;
|
||||
let n_embd = self.n_head * self.head_dim;
|
||||
|
||||
let q = qkv.i((.., .., ..self.n_head * self.head_dim))?;
|
||||
let k = qkv.i((
|
||||
..,
|
||||
..,
|
||||
self.n_head * self.head_dim
|
||||
..self.n_head * self.head_dim + self.n_key_value_head * self.head_dim,
|
||||
))?;
|
||||
let v = qkv.i((
|
||||
..,
|
||||
..,
|
||||
self.n_head * self.head_dim + self.n_key_value_head * self.head_dim..,
|
||||
))?;
|
||||
// todo!("Q {:?} K {:?} V {:?} - x {:?}", q.shape(), k.shape(), v.shape(), x.shape());
|
||||
|
||||
let q = q
|
||||
.reshape((b_sz, seq_len, self.n_head, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.to_dtype(DType::F32)?;
|
||||
let k = k
|
||||
.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.to_dtype(DType::F32)?;
|
||||
let mut v = v
|
||||
.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?
|
||||
.transpose(1, 2)?
|
||||
.to_dtype(DType::F32)?;
|
||||
|
||||
let q = self.apply_rotary_emb(&q, index_pos)?;
|
||||
let mut k = self.apply_rotary_emb(&k, index_pos)?;
|
||||
|
||||
if self.cache.use_kv_cache {
|
||||
let mut cache = self.cache.kvs.lock().unwrap();
|
||||
if let Some((cache_k, cache_v)) = &cache[block_idx] {
|
||||
k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?;
|
||||
v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?;
|
||||
let k_seq_len = k.dims()[1];
|
||||
if k_seq_len > MAX_SEQ_LEN {
|
||||
k = k
|
||||
.narrow(D::Minus1, k_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
|
||||
.contiguous()?
|
||||
}
|
||||
let v_seq_len = v.dims()[1];
|
||||
if v_seq_len > 2 * MAX_SEQ_LEN {
|
||||
v = v
|
||||
.narrow(D::Minus1, v_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
|
||||
.contiguous()?
|
||||
}
|
||||
}
|
||||
cache[block_idx] = Some((k.clone(), v.clone()))
|
||||
}
|
||||
|
||||
let k = self.repeat_kv(k)?;
|
||||
let v = self.repeat_kv(v)?;
|
||||
let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
|
||||
let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
|
||||
let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
|
||||
let att = att.softmax(D::Minus1)?;
|
||||
// Convert to contiguous as matmul doesn't support strided vs for now.
|
||||
let y = att.matmul(&v.contiguous()?)?;
|
||||
let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
|
||||
let y = y.to_dtype(x_dtype)?;
|
||||
let y = self.o_proj.forward(&y)?;
|
||||
Ok(y)
|
||||
}
|
||||
|
||||
fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
|
||||
let n_rep = self.n_head / self.n_key_value_head;
|
||||
if n_rep == 1 {
|
||||
Ok(x)
|
||||
} else {
|
||||
let (b_sz, n_kv_head, seq_len, head_dim) = x.shape().r4()?;
|
||||
let x = x
|
||||
.unsqueeze(2)?
|
||||
.expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
|
||||
.reshape((b_sz, n_kv_head, n_rep, seq_len, head_dim))?;
|
||||
Ok(x)
|
||||
}
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> {
|
||||
let size_in = cfg.hidden_size;
|
||||
let size_q = (cfg.hidden_size / cfg.n_head) * cfg.n_head;
|
||||
let size_kv = (cfg.hidden_size / cfg.n_head) * cfg.n_key_value_head;
|
||||
|
||||
let qkv_proj = TensorParallelColumnLinear::load_multi(
|
||||
vb.clone(),
|
||||
&["q_proj", "k_proj", "v_proj"],
|
||||
comm.clone(),
|
||||
)?;
|
||||
let o_proj = TensorParallelRowLinear::load(vb.pp("o_proj"), comm.clone())?;
|
||||
Ok(Self {
|
||||
qkv_proj,
|
||||
o_proj,
|
||||
n_head: cfg.n_head / comm.world_size(),
|
||||
n_key_value_head: cfg.n_key_value_head / comm.world_size(),
|
||||
head_dim: cfg.hidden_size / cfg.n_head,
|
||||
cache: cache.clone(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
|
||||
let shape = mask.shape();
|
||||
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
|
||||
let m = mask.where_cond(&on_true, on_false)?;
|
||||
Ok(m)
|
||||
}
|
||||
|
||||
struct Mlp {
|
||||
c_fc1: TensorParallelColumnLinear,
|
||||
c_fc2: TensorParallelColumnLinear,
|
||||
c_proj: TensorParallelRowLinear,
|
||||
}
|
||||
|
||||
impl Mlp {
|
||||
fn new(
|
||||
c_fc1: TensorParallelColumnLinear,
|
||||
c_fc2: TensorParallelColumnLinear,
|
||||
c_proj: TensorParallelRowLinear,
|
||||
) -> Self {
|
||||
Self {
|
||||
c_fc1,
|
||||
c_fc2,
|
||||
c_proj,
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor) -> Result<Tensor> {
|
||||
let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
|
||||
self.c_proj.forward(&x)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cfg: &Config, comm: Rc<Comm>) -> Result<Self> {
|
||||
let h_size = cfg.hidden_size;
|
||||
let i_size = cfg.intermediate_size;
|
||||
let c_fc1 = TensorParallelColumnLinear::load(vb.pp("gate_proj"), comm.clone())?;
|
||||
let c_fc2 = TensorParallelColumnLinear::load(vb.pp("up_proj"), comm.clone())?;
|
||||
let c_proj = TensorParallelRowLinear::load(vb.pp("down_proj"), comm.clone())?;
|
||||
Ok(Self::new(c_fc1, c_fc2, c_proj))
|
||||
}
|
||||
}
|
||||
|
||||
struct Block {
|
||||
rms_1: RmsNorm,
|
||||
attn: CausalSelfAttention,
|
||||
rms_2: RmsNorm,
|
||||
mlp: Mlp,
|
||||
}
|
||||
|
||||
impl Block {
|
||||
fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
|
||||
Self {
|
||||
rms_1,
|
||||
attn,
|
||||
rms_2,
|
||||
mlp,
|
||||
}
|
||||
}
|
||||
|
||||
fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
|
||||
let residual = x;
|
||||
let x = self.rms_1.forward(x)?;
|
||||
let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
|
||||
let residual = &x;
|
||||
let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
|
||||
Ok(x)
|
||||
}
|
||||
|
||||
fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> {
|
||||
let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg, comm.clone())?;
|
||||
let mlp = Mlp::load(vb.pp("mlp"), cfg, comm.clone())?;
|
||||
let input_layernorm = RmsNorm::load(cfg.hidden_size, vb.pp("input_layernorm"))?;
|
||||
let post_attention_layernorm =
|
||||
RmsNorm::load(cfg.hidden_size, vb.pp("post_attention_layernorm"))?;
|
||||
Ok(Self::new(
|
||||
input_layernorm,
|
||||
attn,
|
||||
post_attention_layernorm,
|
||||
mlp,
|
||||
))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Llama {
|
||||
wte: Embedding,
|
||||
blocks: Vec<Block>,
|
||||
ln_f: RmsNorm,
|
||||
lm_head: Linear,
|
||||
}
|
||||
|
||||
impl Llama {
|
||||
fn new(wte: Embedding, blocks: Vec<Block>, ln_f: RmsNorm, lm_head: Linear) -> Self {
|
||||
Self {
|
||||
wte,
|
||||
blocks,
|
||||
ln_f,
|
||||
lm_head,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
|
||||
let (_b_sz, seq_len) = x.shape().r2()?;
|
||||
let mut x = self.wte.forward(x)?;
|
||||
for (block_idx, block) in self.blocks.iter().enumerate() {
|
||||
x = block.forward(&x, index_pos, block_idx)?;
|
||||
}
|
||||
let x = self.ln_f.forward(&x)?;
|
||||
let x = x.i((.., seq_len - 1, ..))?;
|
||||
let logits = self.lm_head.forward(&x)?;
|
||||
logits.to_dtype(DType::F32)
|
||||
}
|
||||
|
||||
pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config, comm: Rc<Comm>) -> Result<Self> {
|
||||
let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
|
||||
let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
|
||||
let norm = RmsNorm::load(cfg.hidden_size, vb.pp("model.norm"))?;
|
||||
let blocks: Vec<_> = (0..cfg.n_layer)
|
||||
.map(|i| {
|
||||
Block::load(
|
||||
vb.pp(&format!("model.layers.{i}")),
|
||||
cache,
|
||||
cfg,
|
||||
comm.clone(),
|
||||
)
|
||||
.unwrap()
|
||||
})
|
||||
.collect();
|
||||
|
||||
Ok(Self::new(wte, blocks, norm, lm_head))
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user