Pre-tokenized evaluation mode for llama2.c. (#291)

This commit is contained in:
Laurent Mazare
2023-08-01 05:36:25 +01:00
committed by GitHub
parent f28558d0b7
commit 1a07ff8d17

View File

@ -215,8 +215,13 @@ struct Args {
#[arg(long, default_value = "")]
prompt: String,
/// A directory with the pre-tokenized dataset in the format generated by the tinystories.py
/// script from llama2.c https://github.com/karpathy/llama2.c
#[arg(long)]
eval_file: Option<String>,
pretokenized_dir: Option<String>,
#[arg(long, default_value_t = 32)]
batch_size: usize,
}
fn main() -> anyhow::Result<()> {
@ -243,13 +248,7 @@ fn main() -> anyhow::Result<()> {
match args.task {
Task::Inference => run_inference(tokenizer, &config_path, args)?,
Task::Evaluation => {
if let Some(eval_file) = &args.eval_file {
run_eval_file(eval_file.into(), &config_path, args)?
} else {
run_eval(tokenizer, &config_path, args)?
}
}
Task::Evaluation => run_eval(tokenizer, &config_path, args)?,
Task::Training => todo!(),
}
Ok(())
@ -278,7 +277,6 @@ fn run_eval_file(
println!("dataset loaded: {} tokens", tokens.len());
let seq_len = model.config.seq_len;
let batch_size = 32;
let mut inputs = vec![];
let mut targets = vec![];
for start_idx in (0..tokens.len()).step_by(seq_len) {
@ -290,7 +288,7 @@ fn run_eval_file(
let targets_ = Tensor::new(&tokens[1..], &device)?;
inputs.push(inputs_);
targets.push(targets_);
if inputs.len() >= batch_size {
if inputs.len() >= args.batch_size {
let inp = Tensor::stack(&inputs, 0)?;
let tgt = Tensor::stack(&targets, 0)?;
let logits = model.forward(&inp, 0)?;
@ -314,32 +312,55 @@ fn run_eval(tokenizer: Tokenizer, config_path: &std::path::PathBuf, args: Args)
let cache = model::Cache::new(false, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, config)?;
let api = hf_hub::api::sync::Api::new()?;
let model_id = "roneneldan/TinyStories"; // TODO: Make this configurable.
println!("loading the evaluation dataset from {}", model_id);
let api = api.dataset(model_id.to_string());
let dataset_path = api.get("TinyStories-valid.txt")?;
let file = std::fs::File::open(dataset_path)?;
let file = std::io::BufReader::new(file);
let mut tokens = vec![];
for line in file.lines() {
let line = line?.replace("<|endoftext|>", "");
let line = tokenizer.encode(line, false).map_err(E::msg)?;
tokens.push(line.get_ids().to_vec())
}
let tokens = tokens.concat();
let tokens = match args.pretokenized_dir {
None => {
let api = hf_hub::api::sync::Api::new()?;
let model_id = "roneneldan/TinyStories"; // TODO: Make this configurable.
println!("loading the evaluation dataset from {}", model_id);
let api = api.dataset(model_id.to_string());
let dataset_path = api.get("TinyStories-valid.txt")?;
let file = std::fs::File::open(dataset_path)?;
let file = std::io::BufReader::new(file);
let mut tokens = vec![];
for line in file.lines() {
let line = line?.replace("<|endoftext|>", "<s>");
let line = tokenizer.encode(line, false).map_err(E::msg)?;
tokens.push(line.get_ids().to_vec())
}
tokens.concat()
}
Some(pretokenized_dir) => {
let path = std::path::PathBuf::from(pretokenized_dir).join("data00.bin");
let bytes = std::fs::read(path)?;
// Tokens are encoded as u16.
let mut tokens = vec![0u16; bytes.len() / 2];
std::io::Cursor::new(bytes).read_u16_into::<LittleEndian>(&mut tokens)?;
tokens.into_iter().map(|u| u as u32).collect::<Vec<u32>>()
}
};
println!("dataset loaded and encoded: {} tokens", tokens.len());
let seq_len = 256;
let seq_len = model.config.seq_len;
let mut inputs = vec![];
let mut targets = vec![];
for start_idx in (0..tokens.len()).step_by(seq_len) {
if start_idx + seq_len + 1 > tokens.len() {
break;
}
let tokens = &tokens[start_idx..start_idx + seq_len + 1];
let inputs = Tensor::new(&tokens[..seq_len], &device)?.unsqueeze(0)?;
let targets = Tensor::new(&tokens[1..], &device)?;
let logits = model.forward(&inputs, 0)?.squeeze(0)?;
let loss = candle_nn::loss::cross_entropy(&logits, &targets)?;
println!("{start_idx} {}", loss.to_vec0::<f32>()?);
let inputs_ = Tensor::new(&tokens[..seq_len], &device)?;
let targets_ = Tensor::new(&tokens[1..], &device)?;
inputs.push(inputs_);
targets.push(targets_);
if inputs.len() >= args.batch_size {
let inp = Tensor::stack(&inputs, 0)?;
let tgt = Tensor::stack(&targets, 0)?;
let logits = model.forward(&inp, 0)?;
let loss = candle_nn::loss::cross_entropy(&logits.flatten_to(1)?, &tgt.flatten_to(1)?)?;
println!("{}", loss.to_vec0::<f32>()?);
inputs.clear();
targets.clear();
}
}
Ok(())
}