Add a KV cache to T5. (#873)

* Add a KV cache to T5.

* Suggest using release mode.

* Use the kv cache in decoding.

* Add a comment.
This commit is contained in:
Laurent Mazare
2023-09-17 09:00:45 +02:00
committed by GitHub
parent 8658df3485
commit 1a276b5da7
5 changed files with 577 additions and 50 deletions

View File

@ -54,7 +54,7 @@ pub struct Config {
is_decoder: bool,
is_encoder_decoder: bool,
#[serde(default = "default_use_cache")]
use_cache: bool,
pub use_cache: bool,
pub pad_token_id: usize,
pub eos_token_id: usize,
}
@ -245,10 +245,17 @@ struct T5Attention {
relative_attention_num_buckets: usize,
relative_attention_max_distance: usize,
inner_dim: usize,
use_cache: bool,
kv_cache: Option<(Tensor, Tensor)>,
}
impl T5Attention {
fn load(has_relative_attention_bias: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
fn load(
has_relative_attention_bias: bool,
decoder: bool,
vb: VarBuilder,
cfg: &Config,
) -> Result<Self> {
let inner_dim = cfg.num_heads * cfg.d_kv;
let q = linear_no_bias(cfg.d_model, inner_dim, vb.pp("q"))?;
let k = linear_no_bias(cfg.d_model, inner_dim, vb.pp("k"))?;
@ -275,11 +282,13 @@ impl T5Attention {
relative_attention_num_buckets: cfg.relative_attention_num_buckets,
relative_attention_max_distance: cfg.relative_attention_max_distance,
inner_dim,
use_cache: cfg.use_cache && decoder,
kv_cache: None,
})
}
fn forward(
&self,
&mut self,
xs: &Tensor,
position_bias: Option<&Tensor>,
key_value_states: Option<&Tensor>,
@ -287,7 +296,6 @@ impl T5Attention {
) -> Result<(Tensor, Option<Tensor>)> {
// Performs Self-attention (if key_value_states is None) or attention
// over source sentence (provided by key_value_states).
// TODO: kv caching.
let kv_input = match key_value_states {
None => xs,
Some(key_value_states) => key_value_states,
@ -301,14 +309,22 @@ impl T5Attention {
.reshape((b_sz, q_len, self.n_heads, self.d_kv))?
.transpose(1, 2)?
.contiguous()?;
let k = k
let mut k = k
.reshape((b_sz, kv_len, self.n_heads, self.d_kv))?
.transpose(1, 2)?
.contiguous()?;
let v = v
let mut v = v
.reshape((b_sz, kv_len, self.n_heads, self.d_kv))?
.transpose(1, 2)?
.contiguous()?;
if self.use_cache {
if let Some((kv_cache_k, kv_cache_v)) = &self.kv_cache {
k = Tensor::cat(&[kv_cache_k, &k], 2)?.contiguous()?;
v = Tensor::cat(&[kv_cache_v, &v], 2)?.contiguous()?;
};
self.kv_cache = Some((k.clone(), v.clone()));
};
// TODO: Use flash_attn.
let scores = q.matmul(&k.t()?)?;
let scores = match mask {
@ -394,8 +410,8 @@ struct T5LayerSelfAttention {
}
impl T5LayerSelfAttention {
fn load(h: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
let self_attention = T5Attention::load(h, vb.pp("SelfAttention"), cfg)?;
fn load(h: bool, d: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
let self_attention = T5Attention::load(h, d, vb.pp("SelfAttention"), cfg)?;
let layer_norm =
T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
Ok(Self {
@ -405,7 +421,7 @@ impl T5LayerSelfAttention {
}
fn forward(
&self,
&mut self,
xs: &Tensor,
position_bias: Option<&Tensor>,
mask: Option<&Tensor>,
@ -426,8 +442,8 @@ struct T5LayerCrossAttention {
}
impl T5LayerCrossAttention {
fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let cross_attention = T5Attention::load(false, vb.pp("EncDecAttention"), cfg)?;
fn load(decoder: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
let cross_attention = T5Attention::load(false, decoder, vb.pp("EncDecAttention"), cfg)?;
let layer_norm =
T5LayerNorm::load(cfg.d_model, cfg.layer_norm_epsilon, vb.pp("layer_norm"))?;
Ok(Self {
@ -437,7 +453,7 @@ impl T5LayerCrossAttention {
}
fn forward(
&self,
&mut self,
hidden_states: &Tensor,
position_bias: Option<&Tensor>,
key_value_states: &Tensor,
@ -462,11 +478,17 @@ struct T5Block {
}
impl T5Block {
fn load(has_relative_attention_bias: bool, vb: VarBuilder, cfg: &Config) -> Result<Self> {
fn load(
has_relative_attention_bias: bool,
decoder: bool,
vb: VarBuilder,
cfg: &Config,
) -> Result<Self> {
let vb = vb.pp("layer");
let self_attn = T5LayerSelfAttention::load(has_relative_attention_bias, vb.pp("0"), cfg)?;
let self_attn =
T5LayerSelfAttention::load(has_relative_attention_bias, decoder, vb.pp("0"), cfg)?;
let cross_attn = if cfg.is_decoder {
Some(T5LayerCrossAttention::load(vb.pp("1"), cfg)?)
Some(T5LayerCrossAttention::load(decoder, vb.pp("1"), cfg)?)
} else {
None
};
@ -480,19 +502,28 @@ impl T5Block {
}
fn forward(
&self,
&mut self,
xs: &Tensor,
position_bias: Option<&Tensor>,
encoder_hidden_states: Option<&Tensor>,
) -> Result<(Tensor, Option<Tensor>)> {
// TODO: Cache masks
let mask = match self.cross_attn.is_some() {
true => Some(get_mask(xs.dim(1)?, xs.device())?),
true => {
let mask_len = xs.dim(1)?;
// If the input seq length is 1, no need for a mask, this is also helpful to avoid shape
// issues when using the KV cache in the decoder.
if mask_len <= 1 {
None
} else {
Some(get_mask(mask_len, xs.device())?)
}
}
false => None,
};
let (mut xs, position_bias) = self.self_attn.forward(xs, position_bias, mask.as_ref())?;
// TODO: clamp for f16?
if let Some(cross_attn) = &self.cross_attn {
if let Some(cross_attn) = &mut self.cross_attn {
(xs, _) = cross_attn.forward(&xs, None, encoder_hidden_states.unwrap())?;
// TODO: clamp for f16?
}
@ -510,9 +541,9 @@ struct T5Stack {
}
impl T5Stack {
fn load(vb: VarBuilder, shared: &Arc<Embedding>, cfg: &Config) -> Result<Self> {
fn load(decoder: bool, vb: VarBuilder, shared: &Arc<Embedding>, cfg: &Config) -> Result<Self> {
let block = (0..cfg.num_layers)
.map(|i| T5Block::load(i == 0, vb.pp(&format!("block.{i}")), cfg))
.map(|i| T5Block::load(i == 0, decoder, vb.pp(&format!("block.{i}")), cfg))
.collect::<Result<Vec<_>>>()?;
let final_layer_norm = T5LayerNorm::load(
cfg.d_model,
@ -527,14 +558,14 @@ impl T5Stack {
}
fn forward(
&self,
&mut self,
input_ids: &Tensor,
encoder_hidden_states: Option<&Tensor>,
) -> Result<Tensor> {
let input_embeds = self.shared.as_ref().forward(input_ids)?;
let mut hidden_states = input_embeds;
let mut position_bias = None;
for block in self.block.iter() {
for block in self.block.iter_mut() {
(hidden_states, position_bias) = block.forward(
&hidden_states,
position_bias.as_ref(),
@ -555,14 +586,14 @@ impl T5EncoderModel {
pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
let shared = embedding(cfg.vocab_size, cfg.d_model, vb.pp("shared"))?;
let shared = Arc::new(shared);
let encoder = T5Stack::load(vb.pp("encoder"), &shared, cfg)?;
let encoder = T5Stack::load(false, vb.pp("encoder"), &shared, cfg)?;
Ok(Self {
encoder,
device: vb.device().clone(),
})
}
pub fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
self.encoder.forward(input_ids, None)
}
@ -589,13 +620,13 @@ impl T5ForConditionalGeneration {
encoder_cfg.is_decoder = false;
encoder_cfg.use_cache = false;
encoder_cfg.is_encoder_decoder = false;
let encoder = T5Stack::load(vb.pp("encoder"), &shared, &encoder_cfg)?;
let encoder = T5Stack::load(false, vb.pp("encoder"), &shared, &encoder_cfg)?;
let mut decoder_cfg = cfg.clone();
decoder_cfg.is_decoder = true;
decoder_cfg.is_encoder_decoder = false;
decoder_cfg.num_layers = cfg.num_decoder_layers.unwrap_or(cfg.num_layers);
let decoder = T5Stack::load(vb.pp("decoder"), &shared, &decoder_cfg)?;
let decoder = T5Stack::load(true, vb.pp("decoder"), &shared, &decoder_cfg)?;
Ok(Self {
encoder,
@ -605,7 +636,7 @@ impl T5ForConditionalGeneration {
})
}
pub fn forward(&self, input_ids: &Tensor, decoder_input_ids: &Tensor) -> Result<Tensor> {
pub fn forward(&mut self, input_ids: &Tensor, decoder_input_ids: &Tensor) -> Result<Tensor> {
let encoder_output = self.encoder.forward(input_ids, None)?;
let decoder_output = self
.decoder