mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 10:26:33 +00:00
Sketch the yolo wasm example. (#546)
* Sketch the yolo wasm example. * Web ui. * Get the web ui to work. * UI tweaks. * More UI tweaks. * Use the natural width/height. * Add a link to the hf space in the readme.
This commit is contained in:
1
.gitignore
vendored
1
.gitignore
vendored
@ -26,6 +26,7 @@ flamegraph.svg
|
||||
trace-*.json
|
||||
|
||||
candle-wasm-examples/*/*.bin
|
||||
candle-wasm-examples/*/*.jpeg
|
||||
candle-wasm-examples/*/*.wav
|
||||
candle-wasm-examples/*/*.safetensors
|
||||
candle-wasm-examples/*/package-lock.json
|
||||
|
@ -8,6 +8,7 @@ members = [
|
||||
"candle-transformers",
|
||||
"candle-wasm-examples/llama2-c",
|
||||
"candle-wasm-examples/whisper",
|
||||
"candle-wasm-examples/yolo",
|
||||
]
|
||||
exclude = [
|
||||
"candle-flash-attn",
|
||||
|
@ -7,7 +7,8 @@
|
||||
Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support)
|
||||
and ease of use. Try our online demos:
|
||||
[whisper](https://huggingface.co/spaces/lmz/candle-whisper),
|
||||
[LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2).
|
||||
[LLaMA2](https://huggingface.co/spaces/lmz/candle-llama2),
|
||||
[yolo](https://huggingface.co/spaces/lmz/candle-yolo).
|
||||
|
||||
```rust
|
||||
let a = Tensor::randn(0f32, 1., (2, 3), &Device::Cpu)?;
|
||||
|
@ -1,5 +1,3 @@
|
||||
#![allow(dead_code)]
|
||||
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
@ -156,7 +154,6 @@ struct C2f {
|
||||
cv1: ConvBlock,
|
||||
cv2: ConvBlock,
|
||||
bottleneck: Vec<Bottleneck>,
|
||||
c: usize,
|
||||
}
|
||||
|
||||
impl C2f {
|
||||
@ -173,7 +170,6 @@ impl C2f {
|
||||
cv1,
|
||||
cv2,
|
||||
bottleneck,
|
||||
c,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
57
candle-wasm-examples/yolo/Cargo.toml
Normal file
57
candle-wasm-examples/yolo/Cargo.toml
Normal file
@ -0,0 +1,57 @@
|
||||
[package]
|
||||
name = "candle-wasm-example-yolo"
|
||||
version.workspace = true
|
||||
edition.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
license.workspace = true
|
||||
|
||||
[dependencies]
|
||||
candle = { path = "../../candle-core", version = "0.1.2", package = "candle-core" }
|
||||
candle-nn = { path = "../../candle-nn", version = "0.1.2" }
|
||||
num-traits = { workspace = true }
|
||||
serde = { workspace = true }
|
||||
serde_json = { workspace = true }
|
||||
image = { workspace = true }
|
||||
|
||||
# App crates.
|
||||
anyhow = { workspace = true }
|
||||
byteorder = { workspace = true }
|
||||
log = { workspace = true }
|
||||
rand = { workspace = true }
|
||||
safetensors = { workspace = true }
|
||||
|
||||
# Wasm specific crates.
|
||||
console_error_panic_hook = "0.1.7"
|
||||
getrandom = { version = "0.2", features = ["js"] }
|
||||
gloo = "0.8"
|
||||
js-sys = "0.3.64"
|
||||
wasm-bindgen = "0.2.87"
|
||||
wasm-bindgen-futures = "0.4.37"
|
||||
wasm-logger = "0.2"
|
||||
yew-agent = "0.2.0"
|
||||
yew = { version = "0.20.0", features = ["csr"] }
|
||||
|
||||
[dependencies.web-sys]
|
||||
version = "0.3.64"
|
||||
features = [
|
||||
'Blob',
|
||||
'CanvasRenderingContext2d',
|
||||
'Document',
|
||||
'Element',
|
||||
'HtmlElement',
|
||||
'HtmlCanvasElement',
|
||||
'HtmlImageElement',
|
||||
'ImageData',
|
||||
'Node',
|
||||
'Window',
|
||||
'Request',
|
||||
'RequestCache',
|
||||
'RequestInit',
|
||||
'RequestMode',
|
||||
'Response',
|
||||
'Performance',
|
||||
'TextMetrics',
|
||||
]
|
17
candle-wasm-examples/yolo/index.html
Normal file
17
candle-wasm-examples/yolo/index.html
Normal file
@ -0,0 +1,17 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8" />
|
||||
<title>Welcome to Candle!</title>
|
||||
|
||||
<link data-trunk rel="copy-file" href="yolo.safetensors" />
|
||||
<link data-trunk rel="copy-file" href="bike.jpeg" />
|
||||
<link data-trunk rel="rust" href="Cargo.toml" data-bin="app" data-type="main" />
|
||||
<link data-trunk rel="rust" href="Cargo.toml" data-bin="worker" data-type="worker" />
|
||||
|
||||
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300italic,700,700italic">
|
||||
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/normalize/8.0.1/normalize.css">
|
||||
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/milligram/1.4.1/milligram.css">
|
||||
</head>
|
||||
<body></body>
|
||||
</html>
|
268
candle-wasm-examples/yolo/src/app.rs
Normal file
268
candle-wasm-examples/yolo/src/app.rs
Normal file
@ -0,0 +1,268 @@
|
||||
use crate::console_log;
|
||||
use crate::worker::{ModelData, Worker, WorkerInput, WorkerOutput};
|
||||
use wasm_bindgen::prelude::*;
|
||||
use wasm_bindgen_futures::JsFuture;
|
||||
use yew::{html, Component, Context, Html};
|
||||
use yew_agent::{Bridge, Bridged};
|
||||
|
||||
async fn fetch_url(url: &str) -> Result<Vec<u8>, JsValue> {
|
||||
use web_sys::{Request, RequestCache, RequestInit, RequestMode, Response};
|
||||
let window = web_sys::window().ok_or("window")?;
|
||||
let mut opts = RequestInit::new();
|
||||
let opts = opts
|
||||
.method("GET")
|
||||
.mode(RequestMode::Cors)
|
||||
.cache(RequestCache::NoCache);
|
||||
|
||||
let request = Request::new_with_str_and_init(url, opts)?;
|
||||
|
||||
let resp_value = JsFuture::from(window.fetch_with_request(&request)).await?;
|
||||
|
||||
// `resp_value` is a `Response` object.
|
||||
assert!(resp_value.is_instance_of::<Response>());
|
||||
let resp: Response = resp_value.dyn_into()?;
|
||||
let data = JsFuture::from(resp.blob()?).await?;
|
||||
let blob = web_sys::Blob::from(data);
|
||||
let array_buffer = JsFuture::from(blob.array_buffer()).await?;
|
||||
let data = js_sys::Uint8Array::new(&array_buffer).to_vec();
|
||||
Ok(data)
|
||||
}
|
||||
|
||||
pub enum Msg {
|
||||
Refresh,
|
||||
Run,
|
||||
UpdateStatus(String),
|
||||
SetModel(ModelData),
|
||||
WorkerInMsg(WorkerInput),
|
||||
WorkerOutMsg(Result<WorkerOutput, String>),
|
||||
}
|
||||
|
||||
pub struct CurrentDecode {
|
||||
start_time: Option<f64>,
|
||||
}
|
||||
|
||||
pub struct App {
|
||||
status: String,
|
||||
loaded: bool,
|
||||
generated: String,
|
||||
current_decode: Option<CurrentDecode>,
|
||||
worker: Box<dyn Bridge<Worker>>,
|
||||
}
|
||||
|
||||
async fn model_data_load() -> Result<ModelData, JsValue> {
|
||||
let weights = fetch_url("yolo.safetensors").await?;
|
||||
console_log!("loaded weights {}", weights.len());
|
||||
Ok(ModelData { weights })
|
||||
}
|
||||
|
||||
fn performance_now() -> Option<f64> {
|
||||
let window = web_sys::window()?;
|
||||
let performance = window.performance()?;
|
||||
Some(performance.now() / 1000.)
|
||||
}
|
||||
|
||||
fn draw_bboxes(bboxes: Vec<Vec<crate::model::Bbox>>) -> Result<(), JsValue> {
|
||||
let document = web_sys::window().unwrap().document().unwrap();
|
||||
let canvas = match document.get_element_by_id("canvas") {
|
||||
Some(canvas) => canvas,
|
||||
None => return Err("no canvas".into()),
|
||||
};
|
||||
let canvas: web_sys::HtmlCanvasElement = canvas.dyn_into::<web_sys::HtmlCanvasElement>()?;
|
||||
|
||||
let context = canvas
|
||||
.get_context("2d")?
|
||||
.ok_or("no 2d")?
|
||||
.dyn_into::<web_sys::CanvasRenderingContext2d>()?;
|
||||
|
||||
let image_html_element = document.get_element_by_id("bike-img");
|
||||
let image_html_element = match image_html_element {
|
||||
Some(data) => data,
|
||||
None => return Err("no bike-img".into()),
|
||||
};
|
||||
let image_html_element = image_html_element.dyn_into::<web_sys::HtmlImageElement>()?;
|
||||
canvas.set_width(image_html_element.natural_width());
|
||||
canvas.set_height(image_html_element.natural_height());
|
||||
context.draw_image_with_html_image_element(&image_html_element, 0., 0.)?;
|
||||
context.set_stroke_style(&JsValue::from("#0dff9a"));
|
||||
for (class_index, bboxes_for_class) in bboxes.iter().enumerate() {
|
||||
for b in bboxes_for_class.iter() {
|
||||
let name = crate::coco_classes::NAMES[class_index];
|
||||
context.stroke_rect(
|
||||
b.xmin as f64,
|
||||
b.ymin as f64,
|
||||
(b.xmax - b.xmin) as f64,
|
||||
(b.ymax - b.ymin) as f64,
|
||||
);
|
||||
if let Ok(metrics) = context.measure_text(name) {
|
||||
let width = metrics.width();
|
||||
context.set_fill_style(&"#3c8566".into());
|
||||
context.fill_rect(b.xmin as f64 - 2., b.ymin as f64 - 12., width + 4., 14.);
|
||||
context.set_fill_style(&"#e3fff3".into());
|
||||
context.fill_text(name, b.xmin as f64, b.ymin as f64 - 2.)?
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
impl Component for App {
|
||||
type Message = Msg;
|
||||
type Properties = ();
|
||||
|
||||
fn create(ctx: &Context<Self>) -> Self {
|
||||
let status = "loading weights".to_string();
|
||||
let cb = {
|
||||
let link = ctx.link().clone();
|
||||
move |e| link.send_message(Self::Message::WorkerOutMsg(e))
|
||||
};
|
||||
let worker = Worker::bridge(std::rc::Rc::new(cb));
|
||||
Self {
|
||||
status,
|
||||
generated: String::new(),
|
||||
current_decode: None,
|
||||
worker,
|
||||
loaded: false,
|
||||
}
|
||||
}
|
||||
|
||||
fn rendered(&mut self, ctx: &Context<Self>, first_render: bool) {
|
||||
if first_render {
|
||||
ctx.link().send_future(async {
|
||||
match model_data_load().await {
|
||||
Err(err) => {
|
||||
let status = format!("{err:?}");
|
||||
Msg::UpdateStatus(status)
|
||||
}
|
||||
Ok(model_data) => Msg::SetModel(model_data),
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
fn update(&mut self, ctx: &Context<Self>, msg: Self::Message) -> bool {
|
||||
match msg {
|
||||
Msg::SetModel(md) => {
|
||||
self.status = "weights loaded succesfully!".to_string();
|
||||
self.loaded = true;
|
||||
console_log!("loaded weights");
|
||||
self.worker.send(WorkerInput::ModelData(md));
|
||||
true
|
||||
}
|
||||
Msg::Run => {
|
||||
if self.current_decode.is_some() {
|
||||
self.status = "already processing some image at the moment".to_string()
|
||||
} else {
|
||||
let start_time = performance_now();
|
||||
self.current_decode = Some(CurrentDecode { start_time });
|
||||
self.status = "processing...".to_string();
|
||||
self.generated.clear();
|
||||
ctx.link().send_future(async {
|
||||
match fetch_url("bike.jpeg").await {
|
||||
Err(err) => {
|
||||
let status = format!("{err:?}");
|
||||
Msg::UpdateStatus(status)
|
||||
}
|
||||
Ok(image_data) => Msg::WorkerInMsg(WorkerInput::Run(image_data)),
|
||||
}
|
||||
});
|
||||
}
|
||||
true
|
||||
}
|
||||
Msg::WorkerOutMsg(output) => {
|
||||
match output {
|
||||
Ok(WorkerOutput::WeightsLoaded) => self.status = "weights loaded!".to_string(),
|
||||
Ok(WorkerOutput::ProcessingDone(Err(err))) => {
|
||||
self.status = format!("error in worker process: {err}");
|
||||
self.current_decode = None
|
||||
}
|
||||
Ok(WorkerOutput::ProcessingDone(Ok(bboxes))) => {
|
||||
let mut content = Vec::new();
|
||||
for (class_index, bboxes_for_class) in bboxes.iter().enumerate() {
|
||||
for b in bboxes_for_class.iter() {
|
||||
content.push(format!(
|
||||
"bbox {}: xs {:.0}-{:.0} ys {:.0}-{:.0}",
|
||||
crate::coco_classes::NAMES[class_index],
|
||||
b.xmin,
|
||||
b.xmax,
|
||||
b.ymin,
|
||||
b.ymax
|
||||
))
|
||||
}
|
||||
}
|
||||
self.generated = content.join("\n");
|
||||
let dt = self.current_decode.as_ref().and_then(|current_decode| {
|
||||
current_decode.start_time.and_then(|start_time| {
|
||||
performance_now().map(|stop_time| stop_time - start_time)
|
||||
})
|
||||
});
|
||||
self.status = match dt {
|
||||
None => "processing succeeded!".to_string(),
|
||||
Some(dt) => format!("processing succeeded in {:.2}s", dt,),
|
||||
};
|
||||
self.current_decode = None;
|
||||
if let Err(err) = draw_bboxes(bboxes) {
|
||||
self.status = format!("{err:?}")
|
||||
}
|
||||
}
|
||||
Err(err) => {
|
||||
self.status = format!("error in worker {err:?}");
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
Msg::WorkerInMsg(inp) => {
|
||||
self.worker.send(inp);
|
||||
true
|
||||
}
|
||||
Msg::UpdateStatus(status) => {
|
||||
self.status = status;
|
||||
true
|
||||
}
|
||||
Msg::Refresh => true,
|
||||
}
|
||||
}
|
||||
|
||||
fn view(&self, ctx: &Context<Self>) -> Html {
|
||||
html! {
|
||||
<div style="margin: 2%;">
|
||||
<div><p>{"Running an object detection model in the browser using rust/wasm with "}
|
||||
<a href="https://github.com/huggingface/candle" target="_blank">{"candle!"}</a>
|
||||
</p>
|
||||
<p>{"Once the weights have loaded, click on the run button to process an image."}</p>
|
||||
<p><img id="bike-img" src="bike.jpeg"/></p>
|
||||
<p>{"Source: "}<a href="https://commons.wikimedia.org/wiki/File:V%C3%A9lo_parade_-_V%C3%A9lorution_-_bike_critical_mass.JPG">{"wikimedia"}</a></p>
|
||||
</div>
|
||||
{
|
||||
if self.loaded{
|
||||
html!(<button class="button" onclick={ctx.link().callback(move |_| Msg::Run)}> { "run" }</button>)
|
||||
}else{
|
||||
html! { <progress id="progress-bar" aria-label="Loading weights..."></progress> }
|
||||
}
|
||||
}
|
||||
<br/ >
|
||||
<h3>
|
||||
{&self.status}
|
||||
</h3>
|
||||
{
|
||||
if self.current_decode.is_some() {
|
||||
html! { <progress id="progress-bar" aria-label="generating…"></progress> }
|
||||
} else {
|
||||
html! {}
|
||||
}
|
||||
}
|
||||
<div>
|
||||
<canvas id="canvas" height="150" width="150"></canvas>
|
||||
</div>
|
||||
<blockquote>
|
||||
<p> { self.generated.chars().map(|c|
|
||||
if c == '\r' || c == '\n' {
|
||||
html! { <br/> }
|
||||
} else {
|
||||
html! { {c} }
|
||||
}).collect::<Html>()
|
||||
} </p>
|
||||
</blockquote>
|
||||
</div>
|
||||
}
|
||||
}
|
||||
}
|
5
candle-wasm-examples/yolo/src/bin/app.rs
Normal file
5
candle-wasm-examples/yolo/src/bin/app.rs
Normal file
@ -0,0 +1,5 @@
|
||||
fn main() {
|
||||
wasm_logger::init(wasm_logger::Config::new(log::Level::Trace));
|
||||
console_error_panic_hook::set_once();
|
||||
yew::Renderer::<candle_wasm_example_yolo::App>::new().render();
|
||||
}
|
5
candle-wasm-examples/yolo/src/bin/worker.rs
Normal file
5
candle-wasm-examples/yolo/src/bin/worker.rs
Normal file
@ -0,0 +1,5 @@
|
||||
use yew_agent::PublicWorker;
|
||||
fn main() {
|
||||
console_error_panic_hook::set_once();
|
||||
candle_wasm_example_yolo::Worker::register();
|
||||
}
|
82
candle-wasm-examples/yolo/src/coco_classes.rs
Normal file
82
candle-wasm-examples/yolo/src/coco_classes.rs
Normal file
@ -0,0 +1,82 @@
|
||||
pub const NAMES: [&str; 80] = [
|
||||
"person",
|
||||
"bicycle",
|
||||
"car",
|
||||
"motorbike",
|
||||
"aeroplane",
|
||||
"bus",
|
||||
"train",
|
||||
"truck",
|
||||
"boat",
|
||||
"traffic light",
|
||||
"fire hydrant",
|
||||
"stop sign",
|
||||
"parking meter",
|
||||
"bench",
|
||||
"bird",
|
||||
"cat",
|
||||
"dog",
|
||||
"horse",
|
||||
"sheep",
|
||||
"cow",
|
||||
"elephant",
|
||||
"bear",
|
||||
"zebra",
|
||||
"giraffe",
|
||||
"backpack",
|
||||
"umbrella",
|
||||
"handbag",
|
||||
"tie",
|
||||
"suitcase",
|
||||
"frisbee",
|
||||
"skis",
|
||||
"snowboard",
|
||||
"sports ball",
|
||||
"kite",
|
||||
"baseball bat",
|
||||
"baseball glove",
|
||||
"skateboard",
|
||||
"surfboard",
|
||||
"tennis racket",
|
||||
"bottle",
|
||||
"wine glass",
|
||||
"cup",
|
||||
"fork",
|
||||
"knife",
|
||||
"spoon",
|
||||
"bowl",
|
||||
"banana",
|
||||
"apple",
|
||||
"sandwich",
|
||||
"orange",
|
||||
"broccoli",
|
||||
"carrot",
|
||||
"hot dog",
|
||||
"pizza",
|
||||
"donut",
|
||||
"cake",
|
||||
"chair",
|
||||
"sofa",
|
||||
"pottedplant",
|
||||
"bed",
|
||||
"diningtable",
|
||||
"toilet",
|
||||
"tvmonitor",
|
||||
"laptop",
|
||||
"mouse",
|
||||
"remote",
|
||||
"keyboard",
|
||||
"cell phone",
|
||||
"microwave",
|
||||
"oven",
|
||||
"toaster",
|
||||
"sink",
|
||||
"refrigerator",
|
||||
"book",
|
||||
"clock",
|
||||
"vase",
|
||||
"scissors",
|
||||
"teddy bear",
|
||||
"hair drier",
|
||||
"toothbrush",
|
||||
];
|
6
candle-wasm-examples/yolo/src/lib.rs
Normal file
6
candle-wasm-examples/yolo/src/lib.rs
Normal file
@ -0,0 +1,6 @@
|
||||
mod app;
|
||||
mod coco_classes;
|
||||
mod model;
|
||||
mod worker;
|
||||
pub use app::App;
|
||||
pub use worker::Worker;
|
684
candle-wasm-examples/yolo/src/model.rs
Normal file
684
candle-wasm-examples/yolo/src/model.rs
Normal file
@ -0,0 +1,684 @@
|
||||
#![allow(dead_code)]
|
||||
use candle::{DType, IndexOp, Result, Tensor, D};
|
||||
use candle_nn::{
|
||||
batch_norm, conv2d, conv2d_no_bias, BatchNorm, Conv2d, Conv2dConfig, Module, VarBuilder,
|
||||
};
|
||||
use image::DynamicImage;
|
||||
|
||||
const CONFIDENCE_THRESHOLD: f32 = 0.5;
|
||||
const NMS_THRESHOLD: f32 = 0.4;
|
||||
|
||||
// Model architecture from https://github.com/ultralytics/ultralytics/issues/189
|
||||
// https://github.com/tinygrad/tinygrad/blob/master/examples/yolov8.py
|
||||
|
||||
#[derive(Clone, Copy, PartialEq, Debug)]
|
||||
pub struct Multiples {
|
||||
depth: f64,
|
||||
width: f64,
|
||||
ratio: f64,
|
||||
}
|
||||
|
||||
impl Multiples {
|
||||
pub fn n() -> Self {
|
||||
Self {
|
||||
depth: 0.33,
|
||||
width: 0.25,
|
||||
ratio: 2.0,
|
||||
}
|
||||
}
|
||||
pub fn s() -> Self {
|
||||
Self {
|
||||
depth: 0.33,
|
||||
width: 0.50,
|
||||
ratio: 2.0,
|
||||
}
|
||||
}
|
||||
pub fn m() -> Self {
|
||||
Self {
|
||||
depth: 0.67,
|
||||
width: 0.75,
|
||||
ratio: 1.5,
|
||||
}
|
||||
}
|
||||
pub fn l() -> Self {
|
||||
Self {
|
||||
depth: 1.00,
|
||||
width: 1.00,
|
||||
ratio: 1.0,
|
||||
}
|
||||
}
|
||||
pub fn x() -> Self {
|
||||
Self {
|
||||
depth: 1.00,
|
||||
width: 1.25,
|
||||
ratio: 1.0,
|
||||
}
|
||||
}
|
||||
|
||||
fn filters(&self) -> (usize, usize, usize) {
|
||||
let f1 = (256. * self.width) as usize;
|
||||
let f2 = (512. * self.width) as usize;
|
||||
let f3 = (512. * self.width * self.ratio) as usize;
|
||||
(f1, f2, f3)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Upsample {
|
||||
scale_factor: usize,
|
||||
}
|
||||
|
||||
impl Upsample {
|
||||
fn new(scale_factor: usize) -> Result<Self> {
|
||||
Ok(Upsample { scale_factor })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Upsample {
|
||||
fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
|
||||
let (_b_size, _channels, h, w) = xs.dims4()?;
|
||||
xs.upsample_nearest2d(self.scale_factor * h, self.scale_factor * w)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct ConvBlock {
|
||||
conv: Conv2d,
|
||||
bn: BatchNorm,
|
||||
}
|
||||
|
||||
impl ConvBlock {
|
||||
fn load(
|
||||
vb: VarBuilder,
|
||||
c1: usize,
|
||||
c2: usize,
|
||||
k: usize,
|
||||
stride: usize,
|
||||
padding: Option<usize>,
|
||||
) -> Result<Self> {
|
||||
let padding = padding.unwrap_or(k / 2);
|
||||
let cfg = Conv2dConfig { padding, stride };
|
||||
let conv = conv2d_no_bias(c1, c2, k, cfg, vb.pp("conv"))?;
|
||||
let bn = batch_norm(c2, 1e-3, vb.pp("bn"))?;
|
||||
Ok(Self { conv, bn })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for ConvBlock {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let xs = self.conv.forward(xs)?;
|
||||
let xs = self.bn.forward(&xs)?;
|
||||
candle_nn::ops::silu(&xs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Bottleneck {
|
||||
cv1: ConvBlock,
|
||||
cv2: ConvBlock,
|
||||
residual: bool,
|
||||
}
|
||||
|
||||
impl Bottleneck {
|
||||
fn load(vb: VarBuilder, c1: usize, c2: usize, shortcut: bool) -> Result<Self> {
|
||||
let channel_factor = 1.;
|
||||
let c_ = (c2 as f64 * channel_factor) as usize;
|
||||
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 3, 1, None)?;
|
||||
let cv2 = ConvBlock::load(vb.pp("cv2"), c_, c2, 3, 1, None)?;
|
||||
let residual = c1 == c2 && shortcut;
|
||||
Ok(Self { cv1, cv2, residual })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Bottleneck {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let ys = self.cv2.forward(&self.cv1.forward(xs)?)?;
|
||||
if self.residual {
|
||||
xs + ys
|
||||
} else {
|
||||
Ok(ys)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct C2f {
|
||||
cv1: ConvBlock,
|
||||
cv2: ConvBlock,
|
||||
bottleneck: Vec<Bottleneck>,
|
||||
}
|
||||
|
||||
impl C2f {
|
||||
fn load(vb: VarBuilder, c1: usize, c2: usize, n: usize, shortcut: bool) -> Result<Self> {
|
||||
let c = (c2 as f64 * 0.5) as usize;
|
||||
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, 2 * c, 1, 1, None)?;
|
||||
let cv2 = ConvBlock::load(vb.pp("cv2"), (2 + n) * c, c2, 1, 1, None)?;
|
||||
let mut bottleneck = Vec::with_capacity(n);
|
||||
for idx in 0..n {
|
||||
let b = Bottleneck::load(vb.pp(&format!("bottleneck.{idx}")), c, c, shortcut)?;
|
||||
bottleneck.push(b)
|
||||
}
|
||||
Ok(Self {
|
||||
cv1,
|
||||
cv2,
|
||||
bottleneck,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for C2f {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let ys = self.cv1.forward(xs)?;
|
||||
let mut ys = ys.chunk(2, 1)?;
|
||||
for m in self.bottleneck.iter() {
|
||||
ys.push(m.forward(ys.last().unwrap())?)
|
||||
}
|
||||
let zs = Tensor::cat(ys.as_slice(), 1)?;
|
||||
self.cv2.forward(&zs)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Sppf {
|
||||
cv1: ConvBlock,
|
||||
cv2: ConvBlock,
|
||||
k: usize,
|
||||
}
|
||||
|
||||
impl Sppf {
|
||||
fn load(vb: VarBuilder, c1: usize, c2: usize, k: usize) -> Result<Self> {
|
||||
let c_ = c1 / 2;
|
||||
let cv1 = ConvBlock::load(vb.pp("cv1"), c1, c_, 1, 1, None)?;
|
||||
let cv2 = ConvBlock::load(vb.pp("cv2"), c_ * 4, c2, 1, 1, None)?;
|
||||
Ok(Self { cv1, cv2, k })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Sppf {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let (_, _, _, _) = xs.dims4()?;
|
||||
let xs = self.cv1.forward(xs)?;
|
||||
let xs2 = xs
|
||||
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
||||
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
||||
.max_pool2d((self.k, self.k), (1, 1))?;
|
||||
let xs3 = xs2
|
||||
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
||||
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
||||
.max_pool2d((self.k, self.k), (1, 1))?;
|
||||
let xs4 = xs3
|
||||
.pad_with_zeros(2, self.k / 2, self.k / 2)?
|
||||
.pad_with_zeros(3, self.k / 2, self.k / 2)?
|
||||
.max_pool2d((self.k, self.k), (1, 1))?;
|
||||
self.cv2.forward(&Tensor::cat(&[&xs, &xs2, &xs3, &xs4], 1)?)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Dfl {
|
||||
conv: Conv2d,
|
||||
num_classes: usize,
|
||||
}
|
||||
|
||||
impl Dfl {
|
||||
fn load(vb: VarBuilder, num_classes: usize) -> Result<Self> {
|
||||
let conv = conv2d_no_bias(num_classes, 1, 1, Default::default(), vb.pp("conv"))?;
|
||||
Ok(Self { conv, num_classes })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for Dfl {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let (b_sz, _channels, anchors) = xs.dims3()?;
|
||||
let xs = xs
|
||||
.reshape((b_sz, 4, self.num_classes, anchors))?
|
||||
.transpose(2, 1)?;
|
||||
let xs = candle_nn::ops::softmax(&xs, 1)?;
|
||||
self.conv.forward(&xs)?.reshape((b_sz, 4, anchors))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct DarkNet {
|
||||
b1_0: ConvBlock,
|
||||
b1_1: ConvBlock,
|
||||
b2_0: C2f,
|
||||
b2_1: ConvBlock,
|
||||
b2_2: C2f,
|
||||
b3_0: ConvBlock,
|
||||
b3_1: C2f,
|
||||
b4_0: ConvBlock,
|
||||
b4_1: C2f,
|
||||
b5: Sppf,
|
||||
}
|
||||
|
||||
impl DarkNet {
|
||||
fn load(vb: VarBuilder, m: Multiples) -> Result<Self> {
|
||||
let (w, r, d) = (m.width, m.ratio, m.depth);
|
||||
let b1_0 = ConvBlock::load(vb.pp("b1.0"), 3, (64. * w) as usize, 3, 2, Some(1))?;
|
||||
let b1_1 = ConvBlock::load(
|
||||
vb.pp("b1.1"),
|
||||
(64. * w) as usize,
|
||||
(128. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let b2_0 = C2f::load(
|
||||
vb.pp("b2.0"),
|
||||
(128. * w) as usize,
|
||||
(128. * w) as usize,
|
||||
(3. * d).round() as usize,
|
||||
true,
|
||||
)?;
|
||||
let b2_1 = ConvBlock::load(
|
||||
vb.pp("b2.1"),
|
||||
(128. * w) as usize,
|
||||
(256. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let b2_2 = C2f::load(
|
||||
vb.pp("b2.2"),
|
||||
(256. * w) as usize,
|
||||
(256. * w) as usize,
|
||||
(6. * d).round() as usize,
|
||||
true,
|
||||
)?;
|
||||
let b3_0 = ConvBlock::load(
|
||||
vb.pp("b3.0"),
|
||||
(256. * w) as usize,
|
||||
(512. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let b3_1 = C2f::load(
|
||||
vb.pp("b3.1"),
|
||||
(512. * w) as usize,
|
||||
(512. * w) as usize,
|
||||
(6. * d).round() as usize,
|
||||
true,
|
||||
)?;
|
||||
let b4_0 = ConvBlock::load(
|
||||
vb.pp("b4.0"),
|
||||
(512. * w) as usize,
|
||||
(512. * w * r) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let b4_1 = C2f::load(
|
||||
vb.pp("b4.1"),
|
||||
(512. * w * r) as usize,
|
||||
(512. * w * r) as usize,
|
||||
(3. * d).round() as usize,
|
||||
true,
|
||||
)?;
|
||||
let b5 = Sppf::load(
|
||||
vb.pp("b5.0"),
|
||||
(512. * w * r) as usize,
|
||||
(512. * w * r) as usize,
|
||||
5,
|
||||
)?;
|
||||
Ok(Self {
|
||||
b1_0,
|
||||
b1_1,
|
||||
b2_0,
|
||||
b2_1,
|
||||
b2_2,
|
||||
b3_0,
|
||||
b3_1,
|
||||
b4_0,
|
||||
b4_1,
|
||||
b5,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
|
||||
let x1 = self.b1_1.forward(&self.b1_0.forward(xs)?)?;
|
||||
let x2 = self
|
||||
.b2_2
|
||||
.forward(&self.b2_1.forward(&self.b2_0.forward(&x1)?)?)?;
|
||||
let x3 = self.b3_1.forward(&self.b3_0.forward(&x2)?)?;
|
||||
let x4 = self.b4_1.forward(&self.b4_0.forward(&x3)?)?;
|
||||
let x5 = self.b5.forward(&x4)?;
|
||||
Ok((x2, x3, x5))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct YoloV8Neck {
|
||||
up: Upsample,
|
||||
n1: C2f,
|
||||
n2: C2f,
|
||||
n3: ConvBlock,
|
||||
n4: C2f,
|
||||
n5: ConvBlock,
|
||||
n6: C2f,
|
||||
}
|
||||
|
||||
impl YoloV8Neck {
|
||||
fn load(vb: VarBuilder, m: Multiples) -> Result<Self> {
|
||||
let up = Upsample::new(2)?;
|
||||
let (w, r, d) = (m.width, m.ratio, m.depth);
|
||||
let n = (3. * d).round() as usize;
|
||||
let n1 = C2f::load(
|
||||
vb.pp("n1"),
|
||||
(512. * w * (1. + r)) as usize,
|
||||
(512. * w) as usize,
|
||||
n,
|
||||
false,
|
||||
)?;
|
||||
let n2 = C2f::load(
|
||||
vb.pp("n2"),
|
||||
(768. * w) as usize,
|
||||
(256. * w) as usize,
|
||||
n,
|
||||
false,
|
||||
)?;
|
||||
let n3 = ConvBlock::load(
|
||||
vb.pp("n3"),
|
||||
(256. * w) as usize,
|
||||
(256. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let n4 = C2f::load(
|
||||
vb.pp("n4"),
|
||||
(768. * w) as usize,
|
||||
(512. * w) as usize,
|
||||
n,
|
||||
false,
|
||||
)?;
|
||||
let n5 = ConvBlock::load(
|
||||
vb.pp("n5"),
|
||||
(512. * w) as usize,
|
||||
(512. * w) as usize,
|
||||
3,
|
||||
2,
|
||||
Some(1),
|
||||
)?;
|
||||
let n6 = C2f::load(
|
||||
vb.pp("n6"),
|
||||
(512. * w * (1. + r)) as usize,
|
||||
(512. * w * r) as usize,
|
||||
n,
|
||||
false,
|
||||
)?;
|
||||
Ok(Self {
|
||||
up,
|
||||
n1,
|
||||
n2,
|
||||
n3,
|
||||
n4,
|
||||
n5,
|
||||
n6,
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, p3: &Tensor, p4: &Tensor, p5: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
|
||||
let x = self
|
||||
.n1
|
||||
.forward(&Tensor::cat(&[&self.up.forward(p5)?, p4], 1)?)?;
|
||||
let head_1 = self
|
||||
.n2
|
||||
.forward(&Tensor::cat(&[&self.up.forward(&x)?, p3], 1)?)?;
|
||||
let head_2 = self
|
||||
.n4
|
||||
.forward(&Tensor::cat(&[&self.n3.forward(&head_1)?, &x], 1)?)?;
|
||||
let head_3 = self
|
||||
.n6
|
||||
.forward(&Tensor::cat(&[&self.n5.forward(&head_2)?, p5], 1)?)?;
|
||||
Ok((head_1, head_2, head_3))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct DetectionHead {
|
||||
dfl: Dfl,
|
||||
cv2: [(ConvBlock, ConvBlock, Conv2d); 3],
|
||||
cv3: [(ConvBlock, ConvBlock, Conv2d); 3],
|
||||
ch: usize,
|
||||
no: usize,
|
||||
}
|
||||
|
||||
fn make_anchors(
|
||||
xs0: &Tensor,
|
||||
xs1: &Tensor,
|
||||
xs2: &Tensor,
|
||||
(s0, s1, s2): (usize, usize, usize),
|
||||
grid_cell_offset: f64,
|
||||
) -> Result<(Tensor, Tensor)> {
|
||||
let dev = xs0.device();
|
||||
let mut anchor_points = vec![];
|
||||
let mut stride_tensor = vec![];
|
||||
for (xs, stride) in [(xs0, s0), (xs1, s1), (xs2, s2)] {
|
||||
// xs is only used to extract the h and w dimensions.
|
||||
let (_, _, h, w) = xs.dims4()?;
|
||||
let sx = (Tensor::arange(0, w as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?;
|
||||
let sy = (Tensor::arange(0, h as u32, dev)?.to_dtype(DType::F32)? + grid_cell_offset)?;
|
||||
let sx = sx
|
||||
.reshape((1, sx.elem_count()))?
|
||||
.repeat((h, 1))?
|
||||
.flatten_all()?;
|
||||
let sy = sy
|
||||
.reshape((sy.elem_count(), 1))?
|
||||
.repeat((1, w))?
|
||||
.flatten_all()?;
|
||||
anchor_points.push(Tensor::stack(&[&sx, &sy], D::Minus1)?);
|
||||
stride_tensor.push((Tensor::ones(h * w, DType::F32, dev)? * stride as f64)?);
|
||||
}
|
||||
let anchor_points = Tensor::cat(anchor_points.as_slice(), 0)?;
|
||||
let stride_tensor = Tensor::cat(stride_tensor.as_slice(), 0)?.unsqueeze(1)?;
|
||||
Ok((anchor_points, stride_tensor))
|
||||
}
|
||||
fn dist2bbox(distance: &Tensor, anchor_points: &Tensor) -> Result<Tensor> {
|
||||
let chunks = distance.chunk(2, 1)?;
|
||||
let lt = &chunks[0];
|
||||
let rb = &chunks[1];
|
||||
let x1y1 = anchor_points.sub(lt)?;
|
||||
let x2y2 = anchor_points.add(rb)?;
|
||||
let c_xy = ((&x1y1 + &x2y2)? * 0.5)?;
|
||||
let wh = (&x2y2 - &x1y1)?;
|
||||
Tensor::cat(&[c_xy, wh], 1)
|
||||
}
|
||||
|
||||
impl DetectionHead {
|
||||
fn load(vb: VarBuilder, nc: usize, filters: (usize, usize, usize)) -> Result<Self> {
|
||||
let ch = 16;
|
||||
let dfl = Dfl::load(vb.pp("dfl"), ch)?;
|
||||
let c1 = usize::max(filters.0, nc);
|
||||
let c2 = usize::max(filters.0 / 4, ch * 4);
|
||||
let cv3 = [
|
||||
Self::load_cv3(vb.pp("cv3.0"), c1, nc, filters.0)?,
|
||||
Self::load_cv3(vb.pp("cv3.1"), c1, nc, filters.1)?,
|
||||
Self::load_cv3(vb.pp("cv3.2"), c1, nc, filters.2)?,
|
||||
];
|
||||
let cv2 = [
|
||||
Self::load_cv2(vb.pp("cv2.0"), c2, ch, filters.0)?,
|
||||
Self::load_cv2(vb.pp("cv2.1"), c2, ch, filters.1)?,
|
||||
Self::load_cv2(vb.pp("cv2.2"), c2, ch, filters.2)?,
|
||||
];
|
||||
let no = nc + ch * 4;
|
||||
Ok(Self {
|
||||
dfl,
|
||||
cv2,
|
||||
cv3,
|
||||
ch,
|
||||
no,
|
||||
})
|
||||
}
|
||||
|
||||
fn load_cv3(
|
||||
vb: VarBuilder,
|
||||
c1: usize,
|
||||
nc: usize,
|
||||
filter: usize,
|
||||
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
|
||||
let block0 = ConvBlock::load(vb.pp("0"), filter, c1, 3, 1, None)?;
|
||||
let block1 = ConvBlock::load(vb.pp("1"), c1, c1, 3, 1, None)?;
|
||||
let conv = conv2d(c1, nc, 1, Default::default(), vb.pp("2"))?;
|
||||
Ok((block0, block1, conv))
|
||||
}
|
||||
|
||||
fn load_cv2(
|
||||
vb: VarBuilder,
|
||||
c2: usize,
|
||||
ch: usize,
|
||||
filter: usize,
|
||||
) -> Result<(ConvBlock, ConvBlock, Conv2d)> {
|
||||
let block0 = ConvBlock::load(vb.pp("0"), filter, c2, 3, 1, None)?;
|
||||
let block1 = ConvBlock::load(vb.pp("1"), c2, c2, 3, 1, None)?;
|
||||
let conv = conv2d(c2, 4 * ch, 1, Default::default(), vb.pp("2"))?;
|
||||
Ok((block0, block1, conv))
|
||||
}
|
||||
|
||||
fn forward(&self, xs0: &Tensor, xs1: &Tensor, xs2: &Tensor) -> Result<Tensor> {
|
||||
let forward_cv = |xs, i: usize| {
|
||||
let xs_2 = self.cv2[i].0.forward(xs)?;
|
||||
let xs_2 = self.cv2[i].1.forward(&xs_2)?;
|
||||
let xs_2 = self.cv2[i].2.forward(&xs_2)?;
|
||||
|
||||
let xs_3 = self.cv3[i].0.forward(xs)?;
|
||||
let xs_3 = self.cv3[i].1.forward(&xs_3)?;
|
||||
let xs_3 = self.cv3[i].2.forward(&xs_3)?;
|
||||
Tensor::cat(&[&xs_2, &xs_3], 1)
|
||||
};
|
||||
let xs0 = forward_cv(xs0, 0)?;
|
||||
let xs1 = forward_cv(xs1, 1)?;
|
||||
let xs2 = forward_cv(xs2, 2)?;
|
||||
|
||||
let (anchors, strides) = make_anchors(&xs0, &xs1, &xs2, (8, 16, 32), 0.5)?;
|
||||
let anchors = anchors.transpose(0, 1)?;
|
||||
let strides = strides.transpose(0, 1)?;
|
||||
|
||||
let reshape = |xs: &Tensor| {
|
||||
let d = xs.dim(0)?;
|
||||
let el = xs.elem_count();
|
||||
xs.reshape((d, self.no, el / (d * self.no)))
|
||||
};
|
||||
let ys0 = reshape(&xs0)?;
|
||||
let ys1 = reshape(&xs1)?;
|
||||
let ys2 = reshape(&xs2)?;
|
||||
|
||||
let x_cat = Tensor::cat(&[ys0, ys1, ys2], 2)?;
|
||||
let box_ = x_cat.i((.., ..self.ch * 4))?;
|
||||
let cls = x_cat.i((.., self.ch * 4..))?;
|
||||
|
||||
let dbox = dist2bbox(&self.dfl.forward(&box_)?, &anchors.unsqueeze(0)?)?;
|
||||
let dbox = dbox.broadcast_mul(&strides)?;
|
||||
Tensor::cat(&[dbox, candle_nn::ops::sigmoid(&cls)?], 1)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct YoloV8 {
|
||||
net: DarkNet,
|
||||
fpn: YoloV8Neck,
|
||||
head: DetectionHead,
|
||||
}
|
||||
|
||||
impl YoloV8 {
|
||||
pub fn load(vb: VarBuilder, m: Multiples, num_classes: usize) -> Result<Self> {
|
||||
let net = DarkNet::load(vb.pp("net"), m)?;
|
||||
let fpn = YoloV8Neck::load(vb.pp("fpn"), m)?;
|
||||
let head = DetectionHead::load(vb.pp("head"), num_classes, m.filters())?;
|
||||
Ok(Self { net, fpn, head })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for YoloV8 {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
let (xs1, xs2, xs3) = self.net.forward(xs)?;
|
||||
let (xs1, xs2, xs3) = self.fpn.forward(&xs1, &xs2, &xs3)?;
|
||||
self.head.forward(&xs1, &xs2, &xs3)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
|
||||
pub struct Bbox {
|
||||
pub xmin: f32,
|
||||
pub ymin: f32,
|
||||
pub xmax: f32,
|
||||
pub ymax: f32,
|
||||
pub confidence: f32,
|
||||
}
|
||||
|
||||
// Intersection over union of two bounding boxes.
|
||||
fn iou(b1: &Bbox, b2: &Bbox) -> f32 {
|
||||
let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.);
|
||||
let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.);
|
||||
let i_xmin = b1.xmin.max(b2.xmin);
|
||||
let i_xmax = b1.xmax.min(b2.xmax);
|
||||
let i_ymin = b1.ymin.max(b2.ymin);
|
||||
let i_ymax = b1.ymax.min(b2.ymax);
|
||||
let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
|
||||
i_area / (b1_area + b2_area - i_area)
|
||||
}
|
||||
|
||||
pub fn report(pred: &Tensor, img: DynamicImage, w: usize, h: usize) -> Result<Vec<Vec<Bbox>>> {
|
||||
let (pred_size, npreds) = pred.dims2()?;
|
||||
let nclasses = pred_size - 4;
|
||||
// The bounding boxes grouped by (maximum) class index.
|
||||
let mut bboxes: Vec<Vec<Bbox>> = (0..nclasses).map(|_| vec![]).collect();
|
||||
// Extract the bounding boxes for which confidence is above the threshold.
|
||||
for index in 0..npreds {
|
||||
let pred = Vec::<f32>::try_from(pred.i((.., index))?)?;
|
||||
let confidence = *pred[4..].iter().max_by(|x, y| x.total_cmp(y)).unwrap();
|
||||
if confidence > CONFIDENCE_THRESHOLD {
|
||||
let mut class_index = 0;
|
||||
for i in 0..nclasses {
|
||||
if pred[4 + i] > pred[4 + class_index] {
|
||||
class_index = i
|
||||
}
|
||||
}
|
||||
if pred[class_index + 4] > 0. {
|
||||
let bbox = Bbox {
|
||||
xmin: pred[0] - pred[2] / 2.,
|
||||
ymin: pred[1] - pred[3] / 2.,
|
||||
xmax: pred[0] + pred[2] / 2.,
|
||||
ymax: pred[1] + pred[3] / 2.,
|
||||
confidence,
|
||||
};
|
||||
bboxes[class_index].push(bbox)
|
||||
}
|
||||
}
|
||||
}
|
||||
// Perform non-maximum suppression.
|
||||
for bboxes_for_class in bboxes.iter_mut() {
|
||||
bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
|
||||
let mut current_index = 0;
|
||||
for index in 0..bboxes_for_class.len() {
|
||||
let mut drop = false;
|
||||
for prev_index in 0..current_index {
|
||||
let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
|
||||
if iou > NMS_THRESHOLD {
|
||||
drop = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if !drop {
|
||||
bboxes_for_class.swap(current_index, index);
|
||||
current_index += 1;
|
||||
}
|
||||
}
|
||||
bboxes_for_class.truncate(current_index);
|
||||
}
|
||||
// Annotate the original image and print boxes information.
|
||||
let (initial_h, initial_w) = (img.height() as f32, img.width() as f32);
|
||||
let w_ratio = initial_w / w as f32;
|
||||
let h_ratio = initial_h / h as f32;
|
||||
for (class_index, bboxes_for_class) in bboxes.iter_mut().enumerate() {
|
||||
for b in bboxes_for_class.iter_mut() {
|
||||
crate::console_log!("{}: {:?}", crate::coco_classes::NAMES[class_index], b);
|
||||
b.xmin = (b.xmin * w_ratio).clamp(0., initial_w - 1.);
|
||||
b.ymin = (b.ymin * h_ratio).clamp(0., initial_h - 1.);
|
||||
b.xmax = (b.xmax * w_ratio).clamp(0., initial_w - 1.);
|
||||
b.ymax = (b.ymax * h_ratio).clamp(0., initial_h - 1.);
|
||||
}
|
||||
}
|
||||
Ok(bboxes)
|
||||
}
|
132
candle-wasm-examples/yolo/src/worker.rs
Normal file
132
candle-wasm-examples/yolo/src/worker.rs
Normal file
@ -0,0 +1,132 @@
|
||||
use crate::model::{report, Bbox, Multiples, YoloV8};
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use candle_nn::{Module, VarBuilder};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use wasm_bindgen::prelude::*;
|
||||
use yew_agent::{HandlerId, Public, WorkerLink};
|
||||
|
||||
#[wasm_bindgen]
|
||||
extern "C" {
|
||||
// Use `js_namespace` here to bind `console.log(..)` instead of just
|
||||
// `log(..)`
|
||||
#[wasm_bindgen(js_namespace = console)]
|
||||
pub fn log(s: &str);
|
||||
}
|
||||
|
||||
#[macro_export]
|
||||
macro_rules! console_log {
|
||||
// Note that this is using the `log` function imported above during
|
||||
// `bare_bones`
|
||||
($($t:tt)*) => ($crate::worker::log(&format_args!($($t)*).to_string()))
|
||||
}
|
||||
|
||||
// Communication to the worker happens through bincode, the model weights and configs are fetched
|
||||
// on the main thread and transfered via the following structure.
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub struct ModelData {
|
||||
pub weights: Vec<u8>,
|
||||
}
|
||||
|
||||
struct Model {
|
||||
model: YoloV8,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn run(
|
||||
&self,
|
||||
_link: &WorkerLink<Worker>,
|
||||
_id: HandlerId,
|
||||
image_data: Vec<u8>,
|
||||
) -> Result<Vec<Vec<Bbox>>> {
|
||||
console_log!("image data: {}", image_data.len());
|
||||
let image_data = std::io::Cursor::new(image_data);
|
||||
let original_image = image::io::Reader::new(image_data)
|
||||
.with_guessed_format()?
|
||||
.decode()
|
||||
.map_err(candle::Error::wrap)?;
|
||||
let image = {
|
||||
let data = original_image
|
||||
.resize_exact(640, 640, image::imageops::FilterType::Triangle)
|
||||
.to_rgb8()
|
||||
.into_raw();
|
||||
Tensor::from_vec(data, (640, 640, 3), &Device::Cpu)?.permute((2, 0, 1))?
|
||||
};
|
||||
let image = (image.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = self.model.forward(&image)?.squeeze(0)?;
|
||||
console_log!("generated predictions {predictions:?}");
|
||||
let bboxes = report(&predictions, original_image, 640, 640)?;
|
||||
Ok(bboxes)
|
||||
}
|
||||
}
|
||||
|
||||
impl Model {
|
||||
fn load(md: ModelData) -> Result<Self> {
|
||||
let dev = &Device::Cpu;
|
||||
let weights = safetensors::tensor::SafeTensors::deserialize(&md.weights)?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, dev);
|
||||
let model = YoloV8::load(vb, Multiples::s(), 80)?;
|
||||
Ok(Self { model })
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Worker {
|
||||
link: WorkerLink<Self>,
|
||||
model: Option<Model>,
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub enum WorkerInput {
|
||||
ModelData(ModelData),
|
||||
Run(Vec<u8>),
|
||||
}
|
||||
|
||||
#[derive(Serialize, Deserialize)]
|
||||
pub enum WorkerOutput {
|
||||
ProcessingDone(std::result::Result<Vec<Vec<Bbox>>, String>),
|
||||
WeightsLoaded,
|
||||
}
|
||||
|
||||
impl yew_agent::Worker for Worker {
|
||||
type Input = WorkerInput;
|
||||
type Message = ();
|
||||
type Output = std::result::Result<WorkerOutput, String>;
|
||||
type Reach = Public<Self>;
|
||||
|
||||
fn create(link: WorkerLink<Self>) -> Self {
|
||||
Self { link, model: None }
|
||||
}
|
||||
|
||||
fn update(&mut self, _msg: Self::Message) {
|
||||
// no messaging
|
||||
}
|
||||
|
||||
fn handle_input(&mut self, msg: Self::Input, id: HandlerId) {
|
||||
let output = match msg {
|
||||
WorkerInput::ModelData(md) => match Model::load(md) {
|
||||
Ok(model) => {
|
||||
self.model = Some(model);
|
||||
Ok(WorkerOutput::WeightsLoaded)
|
||||
}
|
||||
Err(err) => Err(format!("model creation error {err:?}")),
|
||||
},
|
||||
WorkerInput::Run(image_data) => match &mut self.model {
|
||||
None => Err("model has not been set yet".to_string()),
|
||||
Some(model) => {
|
||||
let result = model
|
||||
.run(&self.link, id, image_data)
|
||||
.map_err(|e| e.to_string());
|
||||
Ok(WorkerOutput::ProcessingDone(result))
|
||||
}
|
||||
},
|
||||
};
|
||||
self.link.respond(id, output);
|
||||
}
|
||||
|
||||
fn name_of_resource() -> &'static str {
|
||||
"worker.js"
|
||||
}
|
||||
|
||||
fn resource_path_is_relative() -> bool {
|
||||
true
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user