Add PRelu operation (#2904)

* Add PRelu operation

* Apply rustfmt.

---------

Co-authored-by: Laurent <laurent.mazare@gmail.com>
This commit is contained in:
A2va
2025-04-19 07:24:10 +02:00
committed by GitHub
parent 9dbaf958dc
commit 21055b5697
3 changed files with 71 additions and 1 deletions

View File

@ -71,6 +71,8 @@ impl candle::Module for PReLU {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let weight = if self.is_scalar {
self.weight.reshape(())?
} else if xs.shape() == self.weight.shape() {
self.weight.clone()
} else if xs.rank() >= 2 {
let num_channels = xs.dim(1)?;
let num_weights = self.weight.elem_count();
@ -78,7 +80,7 @@ impl candle::Module for PReLU {
candle::bail!("error in prelu: unexpected number of channels for the input, got {num_channels}, weight dim is {num_weights}")
}
let mut s = vec![1; xs.rank()];
s[1] = self.weight.elem_count();
s[1] = num_weights;
self.weight.reshape(s)?
} else {
self.weight.clone()

View File

@ -1,7 +1,9 @@
use crate::onnx::attribute_proto::AttributeType;
use crate::onnx::tensor_proto::DataType;
use crate::onnx::{self, GraphProto};
use candle::Module;
use candle::{bail, DType, Device, Result, Tensor};
use candle_nn::activation::PReLU;
use std::collections::{HashMap, HashSet};
pub type Value = Tensor;
@ -991,6 +993,14 @@ fn simple_eval_(
let output = input.relu()?;
values.insert(node.output[0].clone(), output);
}
"PRelu" => {
// https://onnx.ai/onnx/operators/onnx__PRelu.html
let input = get(&node.input[0])?;
let slope = get(&node.input[1])?;
let output = PReLU::new(slope.clone(), false).forward(input)?;
values.insert(node.output[0].clone(), output);
}
"Ceil" => {
let input = get(&node.input[0])?;
let output = input.ceil()?;

View File

@ -1846,6 +1846,64 @@ fn test_relu_operation() -> Result<()> {
Ok(())
}
// "PRelu"
#[test]
fn test_prelu_operation() -> Result<()> {
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
node: vec![NodeProto {
op_type: "PRelu".to_string(),
domain: "".to_string(),
attribute: vec![],
input: vec![INPUT_X.to_string(), INPUT_Y.to_string()],
output: vec![OUTPUT_Z.to_string()],
name: "".to_string(),
doc_string: "".to_string(),
}],
name: "".to_string(),
initializer: vec![],
input: vec![
ValueInfoProto {
name: INPUT_X.to_string(),
doc_string: "".to_string(),
r#type: None,
},
ValueInfoProto {
name: INPUT_Y.to_string(),
doc_string: "".to_string(),
r#type: None,
},
],
output: vec![ValueInfoProto {
name: OUTPUT_Z.to_string(),
doc_string: "".to_string(),
r#type: None,
}],
value_info: vec![],
doc_string: "".to_string(),
sparse_initializer: vec![],
quantization_annotation: vec![],
}));
let x: Tensor = Tensor::from_vec(
vec![-1.0f32, 1.0f32, -2.0f32, 3.0f32],
&[2, 2],
&Device::Cpu,
)?;
let y: Tensor = Tensor::from_vec(vec![1.0f32, 1.1f32, 1.2f32, 1.3f32], &[2, 2], &Device::Cpu)?;
let mut inputs: HashMap<String, Tensor> = HashMap::new();
inputs.insert(INPUT_X.to_string(), x);
inputs.insert(INPUT_Y.to_string(), y);
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
assert_eq!(eval.len(), 1);
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
let results = z.to_vec2::<f32>()?;
assert_eq!(results, vec![vec![-1.0, 1.0], vec![-2.4, 3.0]]);
Ok(())
}
// "Constant"
// #[test]