Add some code to load the model.

This commit is contained in:
laurent
2025-04-03 12:20:21 +02:00
parent 01e895c1aa
commit 2203f0e3c9
2 changed files with 171 additions and 8 deletions

View File

@ -0,0 +1,156 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use anyhow::Result;
use clap::Parser;
use candle_transformers::models::csm::{Config, Model};
use candle::DType;
use candle_nn::VarBuilder;
use hf_hub::{api::sync::Api, Repo, RepoType};
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
enum Which {
#[value(name = "1b")]
Csm1b,
}
#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,
/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,
#[arg(long)]
use_flash_attn: bool,
#[arg(long)]
prompt: String,
/// The temperature used to generate samples.
#[arg(long, default_value_t = 0.7)]
temperature: f64,
/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,
/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,
/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,
/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,
/// The model size to use.
#[arg(long, default_value = "1b")]
which: Which,
#[arg(long)]
model_id: Option<String>,
#[arg(long, default_value = "main")]
revision: String,
#[arg(long)]
tokenizer: Option<String>,
#[arg(long)]
config: Option<String>,
#[arg(long)]
weights: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,
/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}
fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;
let args = Args::parse();
let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);
let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id,
None => {
let name = match args.which {
Which::Csm1b => "sesame/csm-1b",
};
name.to_string()
}
};
let repo = api.repo(Repo::with_revision(
model_id,
RepoType::Model,
args.revision,
));
let filenames = match args.weights {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => vec![repo.get("model.safetensors")?],
};
println!("retrieved the files in {:?}", start.elapsed());
let start = std::time::Instant::now();
let config: Config = match args.config {
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
None => {
let config_file = repo.get("config.json")?;
serde_json::from_slice(&std::fs::read(config_file)?)?
}
};
let device = candle_examples::device(args.cpu)?;
let (_model, _device) = {
let dtype = DType::F32;
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
(model, device)
};
println!("loaded the model in {:?}", start.elapsed());
Ok(())
}

View File

@ -9,7 +9,7 @@
///
use crate::models::encodec;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{embedding, linear_b, rms_norm, Embedding, Linear, RmsNorm, VarBuilder};
use candle_nn::{embedding, linear_b, Embedding, Linear, RmsNorm, VarBuilder};
use std::sync::Arc;
#[derive(serde::Deserialize, Debug, Clone, Copy, PartialEq, Eq)]
@ -114,13 +114,17 @@ impl RotaryEmbedding {
Ok((q_embed, k_embed))
}
}
fn rms_norm(hidden_size: usize, eps: f64, vb: VarBuilder) -> Result<RmsNorm> {
let weight = vb.get((hidden_size,), "scale")?;
Ok(RmsNorm::new(weight, eps))
}
#[derive(Debug, Clone)]
struct Attention {
q_proj: Linear,
k_proj: Linear,
v_proj: Linear,
output_proj: Linear,
o_proj: Linear,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: Option<(Tensor, Tensor)>,
num_heads: usize,
@ -131,21 +135,24 @@ struct Attention {
impl Attention {
fn new(cfg: &LlamaConfig, rotary_emb: Arc<RotaryEmbedding>, vb: VarBuilder) -> Result<Self> {
let head_dim = cfg.embed_dim / cfg.num_heads;
let kv_dim = cfg.num_kv_heads * head_dim;
let q_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("q_proj"))?;
let k_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("k_proj"))?;
let v_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("v_proj"))?;
let output_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("out_proj"))?;
let k_proj = linear_b(cfg.embed_dim, kv_dim, false, vb.pp("k_proj"))?;
let v_proj = linear_b(cfg.embed_dim, kv_dim, false, vb.pp("v_proj"))?;
let o_proj = linear_b(cfg.embed_dim, cfg.embed_dim, false, vb.pp("output_proj"))?;
Ok(Self {
q_proj,
k_proj,
v_proj,
output_proj,
o_proj,
rotary_emb,
kv_cache: None,
num_heads: cfg.num_heads,
num_kv_heads: cfg.num_kv_heads,
num_kv_groups: cfg.num_heads / cfg.num_kv_heads,
head_dim: cfg.embed_dim / cfg.num_heads,
head_dim,
})
}
@ -205,7 +212,7 @@ impl Attention {
attn_output
.transpose(1, 2)?
.reshape((b_sz, q_len, self.num_heads * self.head_dim))?
.apply(&self.output_proj)
.apply(&self.o_proj)
}
fn clear_kv_cache(&mut self) {