Skeleton for the avg-pool2d and upsample-nearest2d ops. (#337)

* Skeleton for the avg-pool2d and upsample-nearest2d ops.

* Preliminary conv2d support.
This commit is contained in:
Laurent Mazare
2023-08-07 17:15:38 +02:00
committed by GitHub
parent f53a333ea9
commit 2345b8ce3f
7 changed files with 88 additions and 17 deletions

View File

@ -817,6 +817,35 @@ impl Tensor {
Ok(from_storage(storage, out_dims, op, false))
}
pub fn conv2d(&self, _kernel: &Self, _padding: usize, _stride: usize) -> Result<Self> {
todo!()
}
pub fn upsample_nearest2d(&self, target_h: usize, target_w: usize) -> Result<Self> {
let (n, c, _h, _w) = self.dims4()?;
let op = BackpropOp::new1(self, Op::UpsampleNearest2D);
let storage = self
.storage()
.upsample_nearest2d(self.layout(), target_h, target_w)?;
Ok(from_storage(storage, (n, c, target_h, target_w), op, false))
}
pub fn avg_pool2d(&self, kernel_size: (usize, usize), stride: (usize, usize)) -> Result<Self> {
let (n, c, h, w) = self.dims4()?;
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
let w_out = (w - kernel_size.1) / stride.1 + 1;
let op = BackpropOp::new1(self, |arg| Op::AvgPool2D {
arg,
kernel_size,
stride,
});
let storage = self
.storage()
.avg_pool2d(self.layout(), kernel_size, stride)?;
Ok(from_storage(storage, (n, c, h_out, w_out), op, false))
}
/// Returns the matrix-multiplication of the input tensor with the other provided tensor.
///
/// # Arguments