Cleanup some todos. (#226)

* Cleanup some todos.

* Fix more todo.

* Optimize for the contiguous case.

* Add the IntDType trait.

* Handle the intdtype trait for more ops.

* Remove a todo.

* Remove a todo.
This commit is contained in:
Laurent Mazare
2023-07-23 17:00:00 +02:00
committed by GitHub
parent e449ce53a2
commit 23827c49cd
6 changed files with 231 additions and 174 deletions

View File

@ -1,26 +1,20 @@
// TODO: Use a proper distributed reduction rather than atomicAdd.
// https://people.maths.ox.ac.uk/gilesm/cuda/prac4/reduction.pdf
#include "cuda_utils.cuh"
#include<stdint.h>
#include<cmath>
#include <cmath>
#include <stdint.h>
const int BLOCK_SIZE = 1024;
// TODO: Maybe add some fast_sum_f16_f32 variant that not only accumulate in f32 but
// also expect a f32 output so that this can be used for normalization e.g. in softmax.
// TODO: Maybe add some fast_sum_f16_f32 variant that not only accumulate in f32
// but also expect a f32 output so that this can be used for normalization e.g.
// in softmax.
// Fast reduce sum kernel, this assumes that the dimensions to loop over are at
// the end, each block is responsible for populating one value in the output array.
// There are at most 1024 threads per block.
// the end, each block is responsible for populating one value in the output
// array. There are at most 1024 threads per block.
template <typename T>
__device__ void fast_sum(
const size_t src_numel,
const size_t el_to_sum_per_block,
const size_t num_dims,
const size_t *info,
const T *src,
T *dst
) {
__device__ void
fast_sum(const size_t src_numel, const size_t el_to_sum_per_block,
const size_t num_dims, const size_t *info, const T *src, T *dst) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
@ -47,21 +41,18 @@ __device__ void fast_sum(
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s) shr[tid] += shr[tid + s];
if (tid < s)
shr[tid] += shr[tid + s];
}
if (tid == 0) dst[dst_id] = shr[0];
if (tid == 0)
dst[dst_id] = shr[0];
}
template <typename T>
__device__ void fast_max(
const size_t src_numel,
const size_t el_to_sum_per_block,
const size_t num_dims,
const size_t *info,
const T *src,
T *dst
) {
__device__ void
fast_max(const size_t src_numel, const size_t el_to_sum_per_block,
const size_t num_dims, const size_t *info, const T *src, T *dst) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
@ -88,21 +79,18 @@ __device__ void fast_max(
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s) shr[tid] = maxg(shr[tid], shr[tid + s]);
if (tid < s)
shr[tid] = maxg(shr[tid], shr[tid + s]);
}
if (tid == 0) dst[dst_id] = shr[0];
if (tid == 0)
dst[dst_id] = shr[0];
}
template <typename T>
__device__ void fast_min(
const size_t src_numel,
const size_t el_to_sum_per_block,
const size_t num_dims,
const size_t *info,
const T *src,
T *dst
) {
__device__ void
fast_min(const size_t src_numel, const size_t el_to_sum_per_block,
const size_t num_dims, const size_t *info, const T *src, T *dst) {
const size_t *dims = info;
const size_t *strides = info + num_dims;
@ -129,83 +117,69 @@ __device__ void fast_min(
// https://stackoverflow.com/questions/66078814/is-cuda-atomicadd-operation-faster-than-launch-another-kernel-when-we-do-reduce
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
__syncthreads();
if (tid < s) shr[tid] = ming(shr[tid], shr[tid + s]);
if (tid < s)
shr[tid] = ming(shr[tid], shr[tid + s]);
}
if (tid == 0) dst[dst_id] = shr[0];
if (tid == 0)
dst[dst_id] = shr[0];
}
#define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, SUM_NAME) \
extern "C" __global__ void MIN_NAME( \
const size_t src_numel, \
const size_t el_to_sum_per_block, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
fast_min(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void MAX_NAME( \
const size_t src_numel, \
const size_t el_to_sum_per_block, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
fast_max(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void SUM_NAME( \
const size_t src_numel, \
const size_t el_to_sum_per_block, \
const size_t num_dims, \
const size_t *info, \
const TYPENAME *src, \
TYPENAME *dst \
) { \
fast_sum(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
#define FAST_OP(TYPENAME, MIN_NAME, MAX_NAME, SUM_NAME) \
extern "C" __global__ void MIN_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
TYPENAME *dst) { \
fast_min(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void MAX_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
TYPENAME *dst) { \
fast_max(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
} \
extern "C" __global__ void SUM_NAME( \
const size_t src_numel, const size_t el_to_sum_per_block, \
const size_t num_dims, const size_t *info, const TYPENAME *src, \
TYPENAME *dst) { \
fast_sum(src_numel, el_to_sum_per_block, num_dims, info, src, dst); \
}
#define SUM_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, \
const size_t num_dims, \
const size_t num_sum_dims, \
const size_t *info, \
const TYPENAME *inp, \
TYPENAME *out \
) { \
const size_t *dims = info; \
const size_t *strides = info + num_dims; \
const size_t *sum_dims_l = info + 2*num_dims; \
const size_t *sum_dims_s = info + 2*num_dims + num_sum_dims; \
if (is_contiguous(num_dims, dims, strides)) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
size_t dst_index = i; \
for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \
size_t stride = sum_dims_s[nd]; \
size_t pre = dst_index / stride; \
size_t post = dst_index % stride; \
dst_index = (pre / sum_dims_l[nd]) * stride + post; \
} \
atomicAdd(out + dst_index, inp[i]); \
} \
} \
else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; i += blockDim.x * gridDim.x) { \
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
size_t dst_index = i; \
for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \
size_t stride = sum_dims_s[nd]; \
size_t pre = dst_index / stride; \
size_t post = dst_index % stride; \
dst_index = (pre / sum_dims_l[nd]) * stride + post; \
} \
atomicAdd(out + dst_index, inp[strided_i]); \
} \
} \
} \
#define SUM_OP(TYPENAME, FN_NAME) \
extern "C" __global__ void FN_NAME( \
const size_t numel, const size_t num_dims, const size_t num_sum_dims, \
const size_t *info, const TYPENAME *inp, TYPENAME *out) { \
const size_t *dims = info; \
const size_t *strides = info + num_dims; \
const size_t *sum_dims_l = info + 2 * num_dims; \
const size_t *sum_dims_s = info + 2 * num_dims + num_sum_dims; \
if (is_contiguous(num_dims, dims, strides)) { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; \
i += blockDim.x * gridDim.x) { \
size_t dst_index = i; \
for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \
size_t stride = sum_dims_s[nd]; \
size_t pre = dst_index / stride; \
size_t post = dst_index % stride; \
dst_index = (pre / sum_dims_l[nd]) * stride + post; \
} \
atomicAdd(out + dst_index, inp[i]); \
} \
} else { \
for (unsigned int i = blockIdx.x * blockDim.x + threadIdx.x; i < numel; \
i += blockDim.x * gridDim.x) { \
unsigned strided_i = get_strided_index(i, num_dims, dims, strides); \
size_t dst_index = i; \
for (unsigned int nd = 0; nd < num_sum_dims; ++nd) { \
size_t stride = sum_dims_s[nd]; \
size_t pre = dst_index / stride; \
size_t post = dst_index % stride; \
dst_index = (pre / sum_dims_l[nd]) * stride + post; \
} \
atomicAdd(out + dst_index, inp[strided_i]); \
} \
} \
}
#if __CUDA_ARCH__ >= 800
SUM_OP(__nv_bfloat16, sum_bf16)