Add wasm support for yolo-v8 pose detection. (#630)

* Add wasm support for yolo-v8 pose detection.

* Better bbox handling.

* Add the pose model in the wasm example lib.
This commit is contained in:
Laurent Mazare
2023-08-27 19:49:24 +01:00
committed by GitHub
parent 72ebb12bca
commit 24dda44c27
3 changed files with 315 additions and 40 deletions

View File

@ -1,4 +1,4 @@
use crate::model::{report, Bbox, Multiples, YoloV8};
use crate::model::{report_detect, report_pose, Bbox, Multiples, YoloV8, YoloV8Pose};
use candle::{DType, Device, Result, Tensor};
use candle_nn::{Module, VarBuilder};
use serde::{Deserialize, Serialize};
@ -81,7 +81,7 @@ impl Model {
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
console_log!("generated predictions {predictions:?}");
let bboxes = report(
let bboxes = report_detect(
&predictions,
original_image,
width,
@ -115,6 +115,86 @@ impl Model {
}
}
pub struct ModelPose {
model: YoloV8Pose,
}
impl ModelPose {
pub fn run(
&self,
image_data: Vec<u8>,
conf_threshold: f32,
iou_threshold: f32,
) -> Result<Vec<Bbox>> {
console_log!("image data: {}", image_data.len());
let image_data = std::io::Cursor::new(image_data);
let original_image = image::io::Reader::new(image_data)
.with_guessed_format()?
.decode()
.map_err(candle::Error::wrap)?;
let (width, height) = {
let w = original_image.width() as usize;
let h = original_image.height() as usize;
if w < h {
let w = w * 640 / h;
// Sizes have to be divisible by 32.
(w / 32 * 32, 640)
} else {
let h = h * 640 / w;
(640, h / 32 * 32)
}
};
let image_t = {
let img = original_image.resize_exact(
width as u32,
height as u32,
image::imageops::FilterType::CatmullRom,
);
let data = img.to_rgb8().into_raw();
Tensor::from_vec(
data,
(img.height() as usize, img.width() as usize, 3),
&Device::Cpu,
)?
.permute((2, 0, 1))?
};
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
console_log!("generated predictions {predictions:?}");
let bboxes = report_pose(
&predictions,
original_image,
width,
height,
conf_threshold,
iou_threshold,
)?;
Ok(bboxes)
}
pub fn load_(weights: &[u8], model_size: &str) -> Result<Self> {
let multiples = match model_size {
"n" => Multiples::n(),
"s" => Multiples::s(),
"m" => Multiples::m(),
"l" => Multiples::l(),
"x" => Multiples::x(),
_ => Err(candle::Error::Msg(
"invalid model size: must be n, s, m, l or x".to_string(),
))?,
};
let dev = &Device::Cpu;
let weights = safetensors::tensor::SafeTensors::deserialize(weights)?;
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, dev);
let model = YoloV8Pose::load(vb, multiples, 1, (17, 3))?;
Ok(Self { model })
}
pub fn load(md: ModelData) -> Result<Self> {
Self::load_(&md.weights, &md.model_size.to_string())
}
}
pub struct Worker {
link: WorkerLink<Self>,
model: Option<Model>,