mirror of
https://github.com/huggingface/candle.git
synced 2025-06-19 03:54:56 +00:00
Add wasm support for yolo-v8 pose detection. (#630)
* Add wasm support for yolo-v8 pose detection. * Better bbox handling. * Add the pose model in the wasm example lib.
This commit is contained in:
@ -1,4 +1,4 @@
|
||||
use crate::model::{report, Bbox, Multiples, YoloV8};
|
||||
use crate::model::{report_detect, report_pose, Bbox, Multiples, YoloV8, YoloV8Pose};
|
||||
use candle::{DType, Device, Result, Tensor};
|
||||
use candle_nn::{Module, VarBuilder};
|
||||
use serde::{Deserialize, Serialize};
|
||||
@ -81,7 +81,7 @@ impl Model {
|
||||
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
|
||||
console_log!("generated predictions {predictions:?}");
|
||||
let bboxes = report(
|
||||
let bboxes = report_detect(
|
||||
&predictions,
|
||||
original_image,
|
||||
width,
|
||||
@ -115,6 +115,86 @@ impl Model {
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ModelPose {
|
||||
model: YoloV8Pose,
|
||||
}
|
||||
|
||||
impl ModelPose {
|
||||
pub fn run(
|
||||
&self,
|
||||
image_data: Vec<u8>,
|
||||
conf_threshold: f32,
|
||||
iou_threshold: f32,
|
||||
) -> Result<Vec<Bbox>> {
|
||||
console_log!("image data: {}", image_data.len());
|
||||
let image_data = std::io::Cursor::new(image_data);
|
||||
let original_image = image::io::Reader::new(image_data)
|
||||
.with_guessed_format()?
|
||||
.decode()
|
||||
.map_err(candle::Error::wrap)?;
|
||||
let (width, height) = {
|
||||
let w = original_image.width() as usize;
|
||||
let h = original_image.height() as usize;
|
||||
if w < h {
|
||||
let w = w * 640 / h;
|
||||
// Sizes have to be divisible by 32.
|
||||
(w / 32 * 32, 640)
|
||||
} else {
|
||||
let h = h * 640 / w;
|
||||
(640, h / 32 * 32)
|
||||
}
|
||||
};
|
||||
let image_t = {
|
||||
let img = original_image.resize_exact(
|
||||
width as u32,
|
||||
height as u32,
|
||||
image::imageops::FilterType::CatmullRom,
|
||||
);
|
||||
let data = img.to_rgb8().into_raw();
|
||||
Tensor::from_vec(
|
||||
data,
|
||||
(img.height() as usize, img.width() as usize, 3),
|
||||
&Device::Cpu,
|
||||
)?
|
||||
.permute((2, 0, 1))?
|
||||
};
|
||||
let image_t = (image_t.unsqueeze(0)?.to_dtype(DType::F32)? * (1. / 255.))?;
|
||||
let predictions = self.model.forward(&image_t)?.squeeze(0)?;
|
||||
console_log!("generated predictions {predictions:?}");
|
||||
let bboxes = report_pose(
|
||||
&predictions,
|
||||
original_image,
|
||||
width,
|
||||
height,
|
||||
conf_threshold,
|
||||
iou_threshold,
|
||||
)?;
|
||||
Ok(bboxes)
|
||||
}
|
||||
|
||||
pub fn load_(weights: &[u8], model_size: &str) -> Result<Self> {
|
||||
let multiples = match model_size {
|
||||
"n" => Multiples::n(),
|
||||
"s" => Multiples::s(),
|
||||
"m" => Multiples::m(),
|
||||
"l" => Multiples::l(),
|
||||
"x" => Multiples::x(),
|
||||
_ => Err(candle::Error::Msg(
|
||||
"invalid model size: must be n, s, m, l or x".to_string(),
|
||||
))?,
|
||||
};
|
||||
let dev = &Device::Cpu;
|
||||
let weights = safetensors::tensor::SafeTensors::deserialize(weights)?;
|
||||
let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, dev);
|
||||
let model = YoloV8Pose::load(vb, multiples, 1, (17, 3))?;
|
||||
Ok(Self { model })
|
||||
}
|
||||
|
||||
pub fn load(md: ModelData) -> Result<Self> {
|
||||
Self::load_(&md.weights, &md.model_size.to_string())
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Worker {
|
||||
link: WorkerLink<Self>,
|
||||
model: Option<Model>,
|
||||
|
Reference in New Issue
Block a user