Start adding the Wuerstchen diffusion pipeline (#843)

* Wuerstchen common bits.

* Add the prior layer.

* Start adding diffnext.
This commit is contained in:
Laurent Mazare
2023-09-14 11:56:07 +02:00
committed by GitHub
parent d6447ad635
commit 286f01db14
5 changed files with 279 additions and 0 deletions

View File

@ -9,3 +9,4 @@ pub mod segment_anything;
pub mod stable_diffusion;
pub mod t5;
pub mod whisper;
pub mod wuerstchen;

View File

@ -0,0 +1,126 @@
use candle::{Module, Result, Tensor, D};
use candle_nn::VarBuilder;
// https://github.com/huggingface/diffusers/blob/19edca82f1ff194c07317369a92b470dbae97f34/src/diffusers/pipelines/wuerstchen/modeling_wuerstchen_common.py#L22
#[derive(Debug)]
pub struct WLayerNorm {
inner: candle_nn::LayerNorm,
}
impl WLayerNorm {
pub fn new(size: usize, vb: VarBuilder) -> Result<Self> {
let cfg = candle_nn::layer_norm::LayerNormConfig {
eps: 1e-6,
remove_mean: true,
affine: false,
};
let inner = candle_nn::layer_norm(size, cfg, vb)?;
Ok(Self { inner })
}
}
impl Module for WLayerNorm {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
xs.permute((0, 2, 3, 1))?
.apply(&self.inner)?
.permute((0, 3, 1, 2))
}
}
#[derive(Debug)]
pub struct TimestepBlock {
mapper: candle_nn::Linear,
}
impl TimestepBlock {
pub fn new(c: usize, c_timestep: usize, vb: VarBuilder) -> Result<Self> {
let mapper = candle_nn::linear(c_timestep, c * 2, vb.pp("mapper"))?;
Ok(Self { mapper })
}
pub fn forward(&self, xs: &Tensor, t: &Tensor) -> Result<Tensor> {
let ab = self
.mapper
.forward(t)?
.unsqueeze(2)?
.unsqueeze(3)?
.chunk(2, 1)?;
xs.broadcast_mul(&(&ab[0] + 1.)?)?.broadcast_add(&ab[1])
}
}
#[derive(Debug)]
pub struct GlobalResponseNorm {
gamma: Tensor,
beta: Tensor,
}
impl GlobalResponseNorm {
pub fn new(dim: usize, vb: VarBuilder) -> Result<Self> {
let gamma = vb.get((1, 1, 1, 1, dim), "gamma")?;
let beta = vb.get((1, 1, 1, 1, dim), "beta")?;
Ok(Self { gamma, beta })
}
}
impl Module for GlobalResponseNorm {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let agg_norm = xs.sqr()?.sum_keepdim((1, 2))?;
let stand_div_norm =
agg_norm.broadcast_div(&(agg_norm.mean_keepdim(D::Minus1)? + 1e-6)?)?;
(xs.broadcast_mul(&stand_div_norm)?
.broadcast_mul(&self.gamma)
+ &self.beta)?
+ xs
}
}
#[derive(Debug)]
pub struct ResBlock {
depthwise: candle_nn::Conv2d,
norm: WLayerNorm,
channelwise_lin1: candle_nn::Linear,
channelwise_grn: GlobalResponseNorm,
channelwise_lin2: candle_nn::Linear,
}
impl ResBlock {
pub fn new(c: usize, c_skip: usize, ksize: usize, vb: VarBuilder) -> Result<Self> {
let cfg = candle_nn::Conv2dConfig {
padding: ksize / 2,
groups: c,
..Default::default()
};
let depthwise = candle_nn::conv2d(c + c_skip, c, ksize, cfg, vb.pp("depthwise"))?;
let norm = WLayerNorm::new(c, vb.pp("norm"))?;
let channelwise_lin1 = candle_nn::linear(c, c * 4, vb.pp("channelwise.0"))?;
let channelwise_grn = GlobalResponseNorm::new(c * 4, vb.pp("channelwise.2"))?;
let channelwise_lin2 = candle_nn::linear(c * 4, c, vb.pp("channelwise.4"))?;
Ok(Self {
depthwise,
norm,
channelwise_lin1,
channelwise_grn,
channelwise_lin2,
})
}
pub fn forward(&self, xs: &Tensor, x_skip: Option<&Tensor>) -> Result<Tensor> {
let x_res = xs;
let xs = match x_skip {
None => xs.clone(),
Some(x_skip) => Tensor::cat(&[xs, x_skip], 1)?,
};
let xs = xs
.apply(&self.depthwise)?
.apply(&self.norm)?
.permute((0, 2, 3, 1))?;
let xs = xs
.apply(&self.channelwise_lin1)?
.gelu()?
.apply(&self.channelwise_grn)?
.apply(&self.channelwise_lin2)?
.permute((0, 3, 1, 2))?;
xs + x_res
}
}

View File

@ -0,0 +1,55 @@
#![allow(unused)]
use super::common::{GlobalResponseNorm, ResBlock, TimestepBlock, WLayerNorm};
use candle::{DType, Module, Result, Tensor, D};
use candle_nn::VarBuilder;
#[derive(Debug)]
pub struct ResBlockStageB {
depthwise: candle_nn::Conv2d,
norm: WLayerNorm,
channelwise_lin1: candle_nn::Linear,
channelwise_grn: GlobalResponseNorm,
channelwise_lin2: candle_nn::Linear,
}
impl ResBlockStageB {
pub fn new(c: usize, c_skip: usize, ksize: usize, vb: VarBuilder) -> Result<Self> {
let cfg = candle_nn::Conv2dConfig {
groups: c,
padding: ksize / 2,
..Default::default()
};
let depthwise = candle_nn::conv2d(c, c, ksize, cfg, vb.pp("depthwise"))?;
let norm = WLayerNorm::new(c, vb.pp("norm"))?;
let channelwise_lin1 = candle_nn::linear(c + c_skip, c * 4, vb.pp("channelwise.0"))?;
let channelwise_grn = GlobalResponseNorm::new(4 * c, vb.pp("channelwise.2"))?;
let channelwise_lin2 = candle_nn::linear(c * 4, c, vb.pp("channelwise.4"))?;
Ok(Self {
depthwise,
norm,
channelwise_lin1,
channelwise_grn,
channelwise_lin2,
})
}
pub fn forward(&self, xs: &Tensor, x_skip: Option<&Tensor>) -> Result<Tensor> {
let x_res = xs;
let xs = xs.apply(&self.depthwise)?.apply(&self.norm)?;
let xs = match x_skip {
None => xs.clone(),
Some(x_skip) => Tensor::cat(&[&xs, x_skip], 1)?,
};
let xs = xs
.permute((0, 2, 3, 1))?
.apply(&self.channelwise_lin1)?
.gelu()?
.apply(&self.channelwise_grn)?
.apply(&self.channelwise_lin2)?
.permute((0, 3, 1, 2))?;
xs + x_res
}
}
#[derive(Debug)]
pub struct WDiffNeXt {}

View File

@ -0,0 +1,3 @@
pub mod common;
pub mod diffnext;
pub mod prior;

View File

@ -0,0 +1,94 @@
#![allow(unused)]
use super::common::{ResBlock, TimestepBlock};
use candle::{DType, Module, Result, Tensor, D};
use candle_nn::VarBuilder;
#[derive(Debug)]
struct Block {
res_block: ResBlock,
ts_block: TimestepBlock,
// TODO: attn_block: super::common::AttnBlock,
}
#[derive(Debug)]
pub struct WPrior {
projection: candle_nn::Conv2d,
cond_mapper_lin1: candle_nn::Linear,
cond_mapper_lin2: candle_nn::Linear,
blocks: Vec<Block>,
out_ln: super::common::WLayerNorm,
out_conv: candle_nn::Conv2d,
c_r: usize,
}
impl WPrior {
pub fn new(
c_in: usize,
c: usize,
c_cond: usize,
c_r: usize,
depth: usize,
_nhead: usize,
vb: VarBuilder,
) -> Result<Self> {
let projection = candle_nn::conv2d(c_in, c, 1, Default::default(), vb.pp("projection"))?;
let cond_mapper_lin1 = candle_nn::linear(c_cond, c, vb.pp("cond_mapper.0"))?;
let cond_mapper_lin2 = candle_nn::linear(c, c, vb.pp("cond_mapper.2"))?;
let out_ln = super::common::WLayerNorm::new(c, vb.pp("out.0"))?;
let out_conv = candle_nn::conv2d(c, c_in * 2, 1, Default::default(), vb.pp("out.1"))?;
let mut blocks = Vec::with_capacity(depth);
for index in 0..depth {
let res_block = ResBlock::new(c, 0, 3, vb.pp(format!("blocks.{}", 3 * index)))?;
let ts_block = TimestepBlock::new(c, c_r, vb.pp(format!("blocks.{}", 3 * index + 1)))?;
blocks.push(Block {
res_block,
ts_block,
})
}
Ok(Self {
projection,
cond_mapper_lin1,
cond_mapper_lin2,
blocks,
out_ln,
out_conv,
c_r,
})
}
pub fn gen_r_embedding(&self, r: &Tensor) -> Result<Tensor> {
const MAX_POSITIONS: usize = 10000;
let r = (r * MAX_POSITIONS as f64)?;
let half_dim = self.c_r / 2;
let emb = (MAX_POSITIONS as f64).ln() / (half_dim - 1) as f64;
let emb = (Tensor::arange(0u32, half_dim as u32, r.device())?.to_dtype(DType::F32)?
* -emb)?
.exp()?;
let emb = r.unsqueeze(1)?.broadcast_mul(&emb.unsqueeze(0)?)?;
let emb = Tensor::cat(&[emb.sin()?, emb.cos()?], 1)?;
let emb = if self.c_r % 2 == 1 {
emb.pad_with_zeros(D::Minus1, 0, 1)?
} else {
emb
};
emb.to_dtype(r.dtype())
}
pub fn forward(&self, xs: &Tensor, r: &Tensor, c: &Tensor) -> Result<Tensor> {
let x_in = xs;
let mut xs = xs.apply(&self.projection)?;
// TODO: leaky relu
let c_embed = c
.apply(&self.cond_mapper_lin1)?
.relu()?
.apply(&self.cond_mapper_lin2)?;
let r_embed = self.gen_r_embedding(r)?;
for block in self.blocks.iter() {
xs = block.res_block.forward(&xs, None)?;
xs = block.ts_block.forward(&xs, &r_embed)?;
// TODO: attn
}
let ab = xs.apply(&self.out_ln)?.apply(&self.out_conv)?.chunk(1, 2)?;
(x_in - &ab[0])? / ((&ab[1] - 1.)?.abs()? + 1e-5)
}
}