diff --git a/candle-core/src/backprop.rs b/candle-core/src/backprop.rs index 45448505..a44f732f 100644 --- a/candle-core/src/backprop.rs +++ b/candle-core/src/backprop.rs @@ -33,7 +33,12 @@ impl Tensor { track_grad |= tg; nodes } - Op::Add(lhs, rhs) + Op::Conv1D { + arg: lhs, + kernel: rhs, + .. + } + | Op::Add(lhs, rhs) | Op::Mul(lhs, rhs) | Op::Sub(lhs, rhs) | Op::Div(lhs, rhs) @@ -147,6 +152,7 @@ impl Tensor { let f_grad = pred.where_cond(&zeros, &grad)?; *f_sum_grad = f_sum_grad.add(&f_grad)?; } + Op::Conv1D { .. } => return Err(Error::BackwardNotSupported { op: "conv1d" }), Op::Embedding(_lhs, _rhs) => { return Err(Error::BackwardNotSupported { op: "embedding" }) } diff --git a/candle-core/src/conv.rs b/candle-core/src/conv.rs new file mode 100644 index 00000000..041bb6fb --- /dev/null +++ b/candle-core/src/conv.rs @@ -0,0 +1,27 @@ +#[derive(Debug, Clone, PartialEq, Eq)] +pub(crate) struct ParamsConv1D { + pub(crate) b_size: Option, + // Maybe we should have a version without l_in as this bit depends on the input and not only on + // the weights. + pub(crate) l_in: usize, + pub(crate) c_out: usize, + pub(crate) c_in: usize, + pub(crate) k_size: usize, + pub(crate) padding: usize, + pub(crate) stride: usize, +} + +impl ParamsConv1D { + pub(crate) fn l_out(&self) -> usize { + let dilation = 1; + (self.l_in + 2 * self.padding - dilation * (self.k_size - 1) - 1) / self.stride + 1 + } + + pub(crate) fn out_dims(&self) -> Vec { + let l_out = self.l_out(); + match self.b_size { + None => vec![self.c_out, l_out], + Some(n) => vec![n, self.c_out, l_out], + } + } +} diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs index 0871175f..4eb57bc7 100644 --- a/candle-core/src/cpu_backend.rs +++ b/candle-core/src/cpu_backend.rs @@ -202,6 +202,63 @@ fn copy_strided_src_( } } +struct Conv1D<'a>(&'a crate::conv::ParamsConv1D); + +impl<'a> Map2 for Conv1D<'a> { + const OP: &'static str = "conv1d"; + fn f( + &self, + inp: &[T], + inp_l: &Layout, + k: &[T], + k_l: &Layout, + ) -> Result> { + // TODO: Optimize this (proper algorithm, simd, multithread, remove bound checks, etc). + let p = self.0; + let inp = &inp[inp_l.start_offset()..]; + let k = &k[k_l.start_offset()..]; + let inp_stride = inp_l.stride(); + let (inp_stride0, inp_stride) = if inp_stride.len() == 3 { + (inp_stride[0], &inp_stride[1..]) + } else { + (0, inp_stride) // This value never gets used anyway + }; + let k_stride = k_l.stride(); + let k_over_2 = p.k_size / 2; + let l_out = p.l_out(); + let dst_elems = p.c_out * l_out * p.b_size.unwrap_or(1); + let mut dst = vec![T::zero(); dst_elems]; + // The output shape is [b_size, c_out, l_out] + for b_idx in 0..p.b_size.unwrap_or(1) { + let inp_idx = b_idx * inp_stride0; + let dst_idx = b_idx * p.c_out * l_out; + for dst_c_idx in 0..p.c_out { + let dst_idx = dst_idx + dst_c_idx * l_out; + for dst_l in 0..l_out { + let dst_idx = dst_idx + dst_l; + let mut d = T::zero(); + for offset in 0..p.k_size { + // inp[bidx, src_c_idx, dst_l + offset - k//2] * k[dst_c_idx, src_c_idx, offset] + if k_over_2 <= dst_l + offset && dst_l + offset < k_over_2 + p.l_in { + let src_l = dst_l + offset - k_over_2; + for src_c_idx in 0..p.c_in { + let inp_idx = + inp_idx + src_c_idx * inp_stride[0] + src_l * inp_stride[1]; + let k_idx = dst_c_idx * k_stride[0] + + src_c_idx * k_stride[1] + + offset * k_stride[2]; + d += inp[inp_idx] * k[k_idx] + } + } + } + dst[dst_idx] = d + } + } + } + Ok(dst) + } +} + struct MatMul((usize, usize, usize, usize)); impl Map2 for MatMul { @@ -627,6 +684,16 @@ impl CpuStorage { WCond(pred, layout).map(t, t_l, f, f_l) } + pub(crate) fn conv1d( + &self, + l: &Layout, + kernel: &Self, + kernel_l: &Layout, + params: &crate::conv::ParamsConv1D, + ) -> Result { + Conv1D(params).map(self, l, kernel, kernel_l) + } + pub(crate) fn embedding(&self, ids_l: &Layout, rhs: &Self, rhs_l: &Layout) -> Result { let ids = self.as_slice::()?; let (vocab_size, hidden_size) = rhs_l.shape().r2()?; diff --git a/candle-core/src/cuda_backend.rs b/candle-core/src/cuda_backend.rs index 0c87004b..917655fc 100644 --- a/candle-core/src/cuda_backend.rs +++ b/candle-core/src/cuda_backend.rs @@ -801,6 +801,16 @@ impl CudaStorage { Ok(Self { slice, device }) } + pub(crate) fn conv1d( + &self, + _l: &Layout, + _kernel: &Self, + _kernel_l: &Layout, + _params: &crate::conv::ParamsConv1D, + ) -> Result { + todo!() + } + pub(crate) fn embedding(&self, layout: &Layout, rhs: &Self, rhs_l: &Layout) -> Result { let device = self.device().clone(); let slice = Embedding(self, layout).map(&rhs.slice, &device, rhs_l)?; diff --git a/candle-core/src/dummy_cuda_backend.rs b/candle-core/src/dummy_cuda_backend.rs index b025eeab..0dbd8d54 100644 --- a/candle-core/src/dummy_cuda_backend.rs +++ b/candle-core/src/dummy_cuda_backend.rs @@ -100,6 +100,16 @@ impl CudaStorage { Err(Error::NotCompiledWithCudaSupport) } + pub(crate) fn conv1d( + &self, + _l: &Layout, + _kernel: &Self, + _kernel_l: &Layout, + _params: &crate::conv::ParamsConv1D, + ) -> Result { + Err(Error::NotCompiledWithCudaSupport) + } + pub(crate) fn embedding(&self, _: &Layout, _: &Self, _: &Layout) -> Result { Err(Error::NotCompiledWithCudaSupport) } diff --git a/candle-core/src/lib.rs b/candle-core/src/lib.rs index 0d4c2a8d..2365a34d 100644 --- a/candle-core/src/lib.rs +++ b/candle-core/src/lib.rs @@ -1,4 +1,5 @@ mod backprop; +mod conv; mod cpu_backend; #[cfg(feature = "cuda")] mod cuda_backend; diff --git a/candle-core/src/op.rs b/candle-core/src/op.rs index 860be0b3..ee57b325 100644 --- a/candle-core/src/op.rs +++ b/candle-core/src/op.rs @@ -12,6 +12,14 @@ pub(crate) enum Op { Embedding(Tensor, Tensor), WhereCond(Tensor, Tensor, Tensor), + #[allow(dead_code)] + Conv1D { + arg: Tensor, + kernel: Tensor, + padding: usize, + stride: usize, + }, + Cat(Vec, usize), #[allow(dead_code)] // add is currently unused. diff --git a/candle-core/src/storage.rs b/candle-core/src/storage.rs index 4e630a58..53ea1544 100644 --- a/candle-core/src/storage.rs +++ b/candle-core/src/storage.rs @@ -144,6 +144,32 @@ impl Storage { } } + pub(crate) fn conv1d( + &self, + l: &Layout, + kernel: &Self, + kernel_l: &Layout, + params: &crate::conv::ParamsConv1D, + ) -> Result { + self.same_device(kernel, "conv1d")?; + self.same_dtype(kernel, "conv1d")?; + match (self, &kernel) { + (Storage::Cpu(inp), Storage::Cpu(kernel)) => { + let s = inp.conv1d(l, kernel, kernel_l, params)?; + Ok(Self::Cpu(s)) + } + (Storage::Cuda(inp), Storage::Cuda(kernel)) => { + let s = inp.conv1d(l, kernel, kernel_l, params)?; + Ok(Self::Cuda(s)) + } + (lhs, rhs) => Err(Error::DeviceMismatchBinaryOp { + lhs: lhs.device().location(), + rhs: rhs.device().location(), + op: "conv1d", + }), + } + } + pub(crate) fn where_cond( &self, layout: &Layout, diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs index a468d879..25ab0a9b 100644 --- a/candle-core/src/tensor.rs +++ b/candle-core/src/tensor.rs @@ -432,6 +432,42 @@ impl Tensor { Ok(from_storage(storage, dims, op, false)) } + pub fn conv1d(&self, kernel: &Self, padding: usize, stride: usize) -> Result { + let (c_out, c_in_k, k_size) = kernel.shape().r3()?; + let (b_size, c_in, l_in) = match *self.dims() { + [b_size, c_in, l_in] => (Some(b_size), c_in, l_in), + [c_in, l_in] => (None, c_in, l_in), + _ => todo!("proper error message"), + }; + if c_in != c_in_k { + todo!("proper error message") + } + let params = crate::conv::ParamsConv1D { + b_size, + l_in, + c_out, + c_in, + k_size, + padding, + stride, + }; + let storage = + self.storage + .conv1d(self.layout(), &kernel.storage, kernel.layout(), ¶ms)?; + let op = if self.track_op() || kernel.track_op() { + Some(Op::Conv1D { + arg: self.clone(), + kernel: kernel.clone(), + padding, + stride, + }) + } else { + None + }; + let out_dims = params.out_dims(); + Ok(from_storage(storage, out_dims, op, false)) + } + pub fn matmul(&self, rhs: &Self) -> Result { let a_dims = self.shape().dims(); let b_dims = rhs.shape().dims(); diff --git a/candle-examples/examples/whisper/extract_weights.py b/candle-examples/examples/whisper/extract_weights.py new file mode 100644 index 00000000..65602703 --- /dev/null +++ b/candle-examples/examples/whisper/extract_weights.py @@ -0,0 +1,13 @@ +# Get the checkpoint from +# https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt + +import torch +from safetensors.torch import save_file + +data = torch.load("tiny.en.pt") +weights = {} +for k, v in data["model_state_dict"].items(): + weights[k] = v.contiguous() + print(k, v.shape, v.dtype) +save_file(weights, "tiny.en.safetensors") +print(data["dims"]) diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs new file mode 100644 index 00000000..839dfc13 --- /dev/null +++ b/candle-examples/examples/whisper/main.rs @@ -0,0 +1,573 @@ +#![allow(dead_code)] +// https://github.com/openai/whisper/blob/main/whisper/model.py +// TODO: +// - kv-cache support? + +use anyhow::Result; +use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor}; +use clap::Parser; +use std::collections::HashMap; + +const DTYPE: DType = DType::F32; + +struct VarBuilder<'a> { + safetensors: Option<(HashMap, Vec>)>, + dtype: DType, + device: Device, +} + +impl<'a> VarBuilder<'a> { + pub fn from_safetensors( + safetensors: Vec>, + dtype: DType, + device: Device, + ) -> Self { + let mut routing = HashMap::new(); + for (index, sf) in safetensors.iter().enumerate() { + for k in sf.names() { + routing.insert(k.to_string(), index); + } + } + Self { + safetensors: Some((routing, safetensors)), + device, + dtype, + } + } + + pub fn zeros(dtype: DType, device: Device) -> Self { + Self { + safetensors: None, + device, + dtype, + } + } + + pub fn get>(&self, s: S, tensor_name: &str) -> candle::Result { + let s: Shape = s.into(); + match &self.safetensors { + None => Tensor::zeros(s, self.dtype, &self.device), + Some((routing, safetensors)) => { + // Unwrap or 0 just to let the proper error flow. + let index = routing.get(tensor_name).unwrap_or(&0); + let tensor = safetensors[*index] + .tensor(tensor_name, &self.device)? + .to_dtype(self.dtype)?; + if *tensor.shape() != s { + let msg = format!("shape mismatch for {tensor_name}"); + Err(candle::Error::UnexpectedShape { + msg, + expected: s, + got: tensor.shape().clone(), + })? + } + Ok(tensor) + } + } + } +} + +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +enum HiddenAct { + Gelu, + Relu, +} + +impl HiddenAct { + fn forward(&self, xs: &Tensor) -> candle::Result { + match self { + Self::Gelu => xs.gelu(), + Self::Relu => xs.relu(), + } + } +} + +#[derive(Debug, Clone, PartialEq)] +struct Config { + n_mels: usize, + n_audio_ctx: usize, + n_audio_state: usize, + n_audio_head: usize, + n_audio_layer: usize, + n_vocab: usize, + n_text_ctx: usize, + n_text_state: usize, + n_text_head: usize, + n_text_layer: usize, +} + +impl Config { + fn tiny_en() -> Self { + Self { + n_mels: 80, + n_vocab: 51864, + n_audio_ctx: 1500, + n_audio_state: 384, + n_audio_head: 6, + n_audio_layer: 4, + n_text_ctx: 448, + n_text_state: 384, + n_text_head: 6, + n_text_layer: 4, + } + } +} + +struct Embedding { + embeddings: Tensor, + hidden_size: usize, +} + +impl Embedding { + fn new(embeddings: Tensor, hidden_size: usize) -> Self { + Self { + embeddings, + hidden_size, + } + } + + fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result { + let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?; + Ok(Self::new(embeddings, hidden_size)) + } + + fn forward(&self, indexes: &Tensor) -> Result { + let mut final_dims = indexes.dims().to_vec(); + final_dims.push(self.hidden_size); + let indexes = indexes.flatten_all()?; + let values = Tensor::embedding(&indexes, &self.embeddings)?; + let values = values.reshape(final_dims)?; + Ok(values) + } +} + +struct Linear { + weight: Tensor, + bias: Option, +} + +impl Linear { + fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get((size2, size1), &format!("{p}.weight"))?; + let bias = vb.get(size2, &format!("{p}.bias"))?; + Ok(Self { + weight, + bias: Some(bias), + }) + } + + fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get((size2, size1), &format!("{p}.weight"))?; + Ok(Self { weight, bias: None }) + } + + fn forward(&self, x: &Tensor) -> candle::Result { + let (bsize, _, _) = x.shape().r3()?; + let w = self.weight.broadcast_left(bsize)?.t()?; + let x = x.matmul(&w)?; + match &self.bias { + None => Ok(x), + Some(bias) => x.broadcast_add(bias), + } + } +} + +#[derive(Debug, Clone, Copy, PartialEq, Eq)] +struct ConvConfig { + padding: usize, + stride: usize, +} + +impl Default for ConvConfig { + fn default() -> Self { + Self { + padding: 0, + stride: 1, + } + } +} + +struct Conv1D { + weight: Tensor, + bias: Option, + config: ConvConfig, +} + +impl Conv1D { + fn load( + in_channels: usize, + out_channels: usize, + kernel_size: usize, + config: ConvConfig, + p: &str, + vb: &VarBuilder, + ) -> Result { + let weight = vb.get( + (out_channels, in_channels, kernel_size), + &format!("{p}.weight"), + )?; + let bias = vb.get(out_channels, &format!("{p}.bias"))?; + Ok(Self { + weight, + bias: Some(bias), + config, + }) + } + + fn load_no_bias( + in_channels: usize, + out_channels: usize, + kernel_size: usize, + config: ConvConfig, + p: &str, + vb: &VarBuilder, + ) -> Result { + let weight = vb.get( + (out_channels, in_channels, kernel_size), + &format!("{p}.weight"), + )?; + Ok(Self { + weight, + bias: None, + config, + }) + } + + fn forward(&self, x: &Tensor) -> Result { + let x = x.conv1d(&self.weight, self.config.padding, self.config.stride)?; + match &self.bias { + None => Ok(x), + Some(bias) => { + let b = bias.shape().r1()?; + let bias = bias.reshape((1, b, 1))?; + Ok(x.broadcast_add(&bias)?) + } + } + } +} + +struct Dropout { + pr: f64, +} + +impl Dropout { + fn new(pr: f64) -> Self { + Self { pr } + } + + fn forward(&self, x: &Tensor) -> Result { + // TODO + Ok(x.clone()) + } +} + +// This layer norm version handles both weight and bias so removes the mean. +struct LayerNorm { + weight: Tensor, + bias: Tensor, + eps: f64, +} + +impl LayerNorm { + fn load(size: usize, p: &str, vb: &VarBuilder) -> Result { + let weight = vb.get(size, &format!("{p}.weight"))?; + let bias = vb.get(size, &format!("{p}.bias"))?; + Ok(Self { + weight, + bias, + eps: 1e-5, + }) + } + + fn forward(&self, x: &Tensor) -> Result { + let (_bsize, _seq_len, hidden_size) = x.shape().r3()?; + let mean_x = (x.sum(&[2])? / hidden_size as f64)?; + let x = x.broadcast_sub(&mean_x)?; + let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?; + let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; + let x = x_normed + .broadcast_mul(&self.weight)? + .broadcast_add(&self.bias)?; + Ok(x) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62 +struct MultiHeadAttention { + query: Linear, + key: Linear, + value: Linear, + out: Linear, + n_head: usize, +} + +impl MultiHeadAttention { + fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result { + let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?; + let value = Linear::load(n_state, n_state, &format!("{p}.value"), vb)?; + let key = Linear::load_no_bias(n_state, n_state, &format!("{p}.key"), vb)?; + let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?; + Ok(Self { + query, + key, + value, + out, + n_head, + }) + } + + fn forward(&self, x: &Tensor, xa: Option<&Tensor>) -> Result { + let q = self.query.forward(x)?; + let k = self.key.forward(xa.unwrap_or(x))?; + let v = self.value.forward(xa.unwrap_or(x))?; + let wv = self.qkv_attention(&q, &k, &v)?; + let out = self.out.forward(&wv)?; + Ok(out) + } + + fn reshape_head(&self, x: &Tensor) -> Result { + let (n_batch, n_ctx, n_state) = x.shape().r3()?; + let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head]; + Ok(x.reshape(target_dims)?.transpose(1, 2)?) + } + + fn qkv_attention(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result { + let (_, _, n_state) = q.shape().r3()?; + let scale = ((n_state / self.n_head) as f64).powf(-0.25); + let q = (self.reshape_head(q)? * scale)?; + let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?; + let v = self.reshape_head(v)?.contiguous()?; + let qk = q.matmul(&k)?; + let w = qk.softmax(qk.rank() - 1)?; + let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?; + Ok(wv) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111 +struct ResidualAttentionBlock { + attn: MultiHeadAttention, + attn_ln: LayerNorm, + cross_attn: Option<(MultiHeadAttention, LayerNorm)>, + mlp_linear1: Linear, + mlp_linear2: Linear, + mlp_ln: LayerNorm, +} + +impl ResidualAttentionBlock { + fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result { + let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?; + let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?; + let cross_attn = if ca { + let cross_attn = + MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?; + let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?; + Some((cross_attn, cross_attn_ln)) + } else { + None + }; + let n_mlp = n_state * 4; + let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?; + let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.mlp.2"), vb)?; + let mlp_ln = LayerNorm::load(n_state, &format!("{p}.mlp_ln"), vb)?; + Ok(Self { + attn, + attn_ln, + cross_attn, + mlp_linear1, + mlp_linear2, + mlp_ln, + }) + } + + fn forward(&self, x: &Tensor, xa: Option<&Tensor>) -> Result { + let attn = self.attn.forward(&self.attn_ln.forward(x)?, None)?; + let mut x = (x + attn)?; + if let Some((attn, ln)) = &self.cross_attn { + x = (&x + attn.forward(&ln.forward(&x)?, xa)?)?; + } + let mlp = self.mlp_linear2.forward( + &self + .mlp_linear1 + .forward(&self.mlp_ln.forward(&x)?)? + .gelu()?, + )?; + Ok((x + mlp)?) + } +} + +fn sinusoids(length: usize, channels: usize) -> Result { + let max_timescale = 10000f32; + let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32; + let inv_timescales: Vec<_> = (0..channels / 2) + .map(|i| (i as f32 * (-log_timescale_increment)).exp()) + .collect(); + let arange: Vec<_> = (0..length).map(|c| c as f32).collect(); + let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?; + let arange = Tensor::new(arange.as_slice(), &Device::Cpu)?.unsqueeze(1)?; + let sh = (length, channels / 2); + let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?; + let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?; + Ok(sincos) +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143 +struct AudioEncoder { + conv1: Conv1D, + conv2: Conv1D, + positional_embedding: Tensor, + blocks: Vec, + ln_post: LayerNorm, +} + +impl AudioEncoder { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let n_state = cfg.n_audio_state; + let n_head = cfg.n_audio_head; + let n_ctx = cfg.n_audio_ctx; + let cfg1 = ConvConfig { + padding: 1, + stride: 1, + }; + let cfg2 = ConvConfig { + padding: 1, + stride: 2, + }; + let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?; + let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?; + let positional_embedding = if true { + vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))? + } else { + /* The positional embeddings could be regenerated via the following. */ + sinusoids(n_ctx, n_state)?.to_device(&vb.device)? + }; + let blocks = (0..cfg.n_audio_layer) + .map(|i| { + ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb) + }) + .collect::>>()?; + let ln_post = LayerNorm::load(n_state, &format!("{p}.ln_post"), vb)?; + Ok(Self { + conv1, + conv2, + positional_embedding, + blocks, + ln_post, + }) + } + fn forward(&self, x: &Tensor) -> Result { + let x = self.conv1.forward(x)?.gelu()?; + let x = self.conv2.forward(&x)?.gelu()?; + let x = x.transpose(1, 2)?; + let mut x = x.broadcast_add(&self.positional_embedding)?; + for block in self.blocks.iter() { + x = block.forward(&x, None)? + } + let x = self.ln_post.forward(&x)?; + Ok(x) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176 +struct TextDecoder { + token_embedding: Embedding, + positional_embedding: Tensor, + blocks: Vec, + ln: LayerNorm, +} + +impl TextDecoder { + fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result { + let n_state = cfg.n_text_state; + let n_head = cfg.n_text_head; + let n_ctx = cfg.n_text_ctx; + let token_embedding = + Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?; + let positional_embedding = + vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))?; + let blocks = (0..cfg.n_text_layer) + .map(|i| { + ResidualAttentionBlock::load(n_state, n_head, true, &format!("{p}.blocks.{i}"), vb) + }) + .collect::>>()?; + let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?; + Ok(Self { + token_embedding, + positional_embedding, + blocks, + ln, + }) + } + fn forward(&self, x: &Tensor, xa: &Tensor) -> Result { + let x_dims = x.dims(); + let last = x_dims[x_dims.len() - 1]; + let token_embedding = self.token_embedding.forward(x)?; + let positional_embedding = self.positional_embedding.narrow(0, 0, last)?; + let mut x = token_embedding.broadcast_add(&positional_embedding)?; + for block in self.blocks.iter() { + x = block.forward(&x, Some(xa))?; + } + let x = self.ln.forward(&x)?; + let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?; + let logits = x.matmul(&w.t()?)?; + Ok(logits) + } +} + +// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221 +struct Whisper { + encoder: AudioEncoder, + decoder: TextDecoder, +} + +impl Whisper { + fn load(vb: &VarBuilder, cfg: &Config) -> Result { + let encoder = AudioEncoder::load("encoder", vb, cfg)?; + let decoder = TextDecoder::load("decoder", vb, cfg)?; + Ok(Self { encoder, decoder }) + } + fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result { + let enc = self.encoder.forward(mel)?; + let dec = self.decoder.forward(tokens, &enc)?; + Ok(dec) + } +} + +#[derive(Parser, Debug)] +#[command(author, version, about, long_about = None)] +struct Args { + /// Run on CPU rather than on GPU. + #[arg(long)] + cpu: bool, + + #[arg(long)] + weights: String, + + #[arg(long)] + input: String, +} + +fn main() -> Result<()> { + let args = Args::parse(); + let device = if args.cpu { + Device::Cpu + } else { + Device::new_cuda(0)? + }; + + let input = unsafe { candle::safetensors::MmapedFile::new(args.input)? }; + let input = input.deserialize()?; + let tokens = input.tensor("tokens", &device)?.to_dtype(DType::U32)?; + let mel = input.tensor("mel", &device)?; + + let weights = unsafe { candle::safetensors::MmapedFile::new(args.weights)? }; + let weights = weights.deserialize()?; + let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, device.clone()); + let cfg = Config::tiny_en(); + + let model = Whisper::load(&vb, &cfg)?; + let logits = model.forward(&mel, &tokens)?; + println!("{logits}"); + println!("python logits: {}", input.tensor("dec", &device)?); + Ok(()) +}