Vision dataset (#179)

* Add some readers for the mnist dataset.

* Import the cifar and mnist dataset.
This commit is contained in:
Laurent Mazare
2023-07-16 23:43:55 +01:00
committed by GitHub
parent 6de7345e39
commit 2a74019ec6
4 changed files with 140 additions and 0 deletions

View File

@ -8,6 +8,7 @@ pub mod layer_norm;
pub mod linear; pub mod linear;
pub mod optim; pub mod optim;
pub mod var_builder; pub mod var_builder;
pub mod vision;
pub use activation::Activation; pub use activation::Activation;
pub use conv::{Conv1d, Conv1dConfig}; pub use conv::{Conv1d, Conv1dConfig};

View File

@ -0,0 +1,62 @@
//! The CIFAR-10 dataset.
//!
//! The files can be downloaded from the following page:
//! <https://www.cs.toronto.edu/~kriz/cifar.html>
//! The binary version of the dataset is used.
use crate::vision::Dataset;
use candle::{DType, Device, Result, Tensor};
use std::fs::File;
use std::io::{BufReader, Read};
const W: usize = 32;
const H: usize = 32;
const C: usize = 3;
const BYTES_PER_IMAGE: usize = W * H * C + 1;
const SAMPLES_PER_FILE: usize = 10000;
fn read_file(filename: &std::path::Path) -> Result<(Tensor, Tensor)> {
let mut buf_reader = BufReader::new(File::open(filename)?);
let mut data = vec![0u8; SAMPLES_PER_FILE * BYTES_PER_IMAGE];
buf_reader.read_exact(&mut data)?;
let mut images = vec![];
let mut labels = vec![];
for index in 0..SAMPLES_PER_FILE {
let content_offset = BYTES_PER_IMAGE * index;
labels.push(data[content_offset]);
images.push(&data[1 + content_offset..content_offset + BYTES_PER_IMAGE]);
}
let images: Vec<u8> = images
.iter()
.copied()
.flatten()
.copied()
.collect::<Vec<_>>();
let labels = Tensor::from_vec(labels, SAMPLES_PER_FILE, &Device::Cpu)?;
let images = Tensor::from_vec(images, (SAMPLES_PER_FILE, C, H, W), &Device::Cpu)?;
let images = (images.to_dtype(DType::F32)? / 255.)?;
Ok((images, labels))
}
pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<Dataset> {
let dir = dir.as_ref();
let (test_images, test_labels) = read_file(&dir.join("test_batch.bin"))?;
let train_images_and_labels = [
"data_batch_1.bin",
"data_batch_2.bin",
"data_batch_3.bin",
"data_batch_4.bin",
"data_batch_5.bin",
]
.iter()
.map(|x| read_file(&dir.join(x)))
.collect::<Result<Vec<_>>>()?;
let (train_images, train_labels): (Vec<_>, Vec<_>) =
train_images_and_labels.into_iter().unzip();
Ok(Dataset {
train_images: Tensor::cat(&train_images, 0)?,
train_labels: Tensor::cat(&train_labels, 0)?,
test_images,
test_labels,
labels: 10,
})
}

View File

@ -0,0 +1,65 @@
//! The MNIST hand-written digit dataset.
//!
//! The files can be obtained from the following link:
//! <http://yann.lecun.com/exdb/mnist/>
use candle::{DType, Device, Result, Tensor};
use std::fs::File;
use std::io::{self, BufReader, Read};
fn read_u32<T: Read>(reader: &mut T) -> Result<u32> {
let mut b = vec![0u8; 4];
reader.read_exact(&mut b)?;
let (result, _) = b.iter().rev().fold((0u64, 1u64), |(s, basis), &x| {
(s + basis * u64::from(x), basis * 256)
});
Ok(result as u32)
}
fn check_magic_number<T: Read>(reader: &mut T, expected: u32) -> Result<()> {
let magic_number = read_u32(reader)?;
if magic_number != expected {
Err(io::Error::new(
io::ErrorKind::Other,
format!("incorrect magic number {magic_number} != {expected}"),
))?;
}
Ok(())
}
fn read_labels(filename: &std::path::Path) -> Result<Tensor> {
let mut buf_reader = BufReader::new(File::open(filename)?);
check_magic_number(&mut buf_reader, 2049)?;
let samples = read_u32(&mut buf_reader)?;
let mut data = vec![0u8; samples as usize];
buf_reader.read_exact(&mut data)?;
let samples = data.len();
Tensor::from_vec(data, samples, &Device::Cpu)
}
fn read_images(filename: &std::path::Path) -> Result<Tensor> {
let mut buf_reader = BufReader::new(File::open(filename)?);
check_magic_number(&mut buf_reader, 2051)?;
let samples = read_u32(&mut buf_reader)? as usize;
let rows = read_u32(&mut buf_reader)? as usize;
let cols = read_u32(&mut buf_reader)? as usize;
let data_len = samples * rows * cols;
let mut data = vec![0u8; data_len];
buf_reader.read_exact(&mut data)?;
let tensor = Tensor::from_vec(data, (samples, rows * cols), &Device::Cpu)?;
tensor.to_dtype(DType::F32)? / 255.
}
pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<crate::vision::Dataset> {
let dir = dir.as_ref();
let train_images = read_images(&dir.join("train-images-idx3-ubyte"))?;
let train_labels = read_labels(&dir.join("train-labels-idx1-ubyte"))?;
let test_images = read_images(&dir.join("t10k-images-idx3-ubyte"))?;
let test_labels = read_labels(&dir.join("t10k-labels-idx1-ubyte"))?;
Ok(crate::vision::Dataset {
train_images,
train_labels,
test_images,
test_labels,
labels: 10,
})
}

View File

@ -0,0 +1,12 @@
use candle::Tensor;
pub struct Dataset {
pub train_images: Tensor,
pub train_labels: Tensor,
pub test_images: Tensor,
pub test_labels: Tensor,
pub labels: usize,
}
pub mod cifar;
pub mod mnist;