Add support for conv_transpose1d for metal backend (#1874)

* first attempt

* progress

* integrate into metal backend

* finish and get test passing

* add other dtype support

* update transpose1d dtypes supported
This commit is contained in:
Thomas Santerre
2024-03-19 03:46:58 -04:00
committed by GitHub
parent 143c481c20
commit 2a8679509e
5 changed files with 394 additions and 10 deletions

View File

@ -1717,3 +1717,219 @@ fn avg_pool2d_u32() {
let expected = vec![2, 3, 4, 6, 7, 8, 10, 11, 12];
assert_eq!(results, expected);
}
fn run_conv_transpose1d<T: Clone>(
input: &[T],
input_shape: &[usize],
input_stride: &[usize],
kernel: &[T],
kernel_shape: &[usize],
kernel_stride: &[usize],
dilation: usize,
stride: usize,
padding: usize,
out_padding: usize,
name: &'static str,
) -> Vec<T> {
let device = device();
let command_queue = device.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let c_out = kernel_shape[1];
let k_size = kernel_shape[2];
let b_size = input_shape[0];
let l_in = input_shape[2];
let l_out = (l_in - 1) * stride - 2 * padding + dilation * (k_size - 1) + out_padding + 1;
let dst_el = c_out * l_out * b_size;
let input = new_buffer(&device, input);
let kernel = new_buffer(&device, kernel);
let output = new_buffer(&device, &vec![0.0f32; dst_el]);
let kernels = Kernels::new();
call_conv_transpose1d(
&device,
command_buffer,
&kernels,
name,
dilation,
stride,
padding,
out_padding,
c_out,
l_out,
b_size,
input_shape,
input_stride,
kernel_shape,
kernel_stride,
&input,
0,
&kernel,
0,
&output,
)
.unwrap();
command_buffer.commit();
command_buffer.wait_until_completed();
read_to_vec(&output, dst_el)
}
#[test]
fn conv_transpose1d_f32() {
let input = vec![1.0f32, 2.0, 3.0, 4.0];
let input_shape = &[1, 1, 4];
let input_stride = &[4, 4, 1];
let kernel = vec![1.0f32, 2.0, 3.0, 4.0];
let kernel_shape = &[1, 1, 4];
let kernel_stride = &[4, 4, 1];
let results = run_conv_transpose1d(
&input,
input_shape,
input_stride,
&kernel,
kernel_shape,
kernel_stride,
1,
1,
0,
0,
"conv_transpose1d_f32",
);
let expected = vec![1., 4., 10., 20., 25., 24., 16.];
assert_eq!(results, expected);
}
#[test]
fn conv_transpose1d_f16() {
let input: Vec<f16> = vec![1.0, 2.0, 3.0, 4.0]
.iter()
.map(|v| f16::from_f32(*v))
.collect();
let input_shape = &[1, 1, 4];
let input_stride = &[4, 4, 1];
let kernel: Vec<f16> = vec![1.0, 2.0, 3.0, 4.0]
.iter()
.map(|v| f16::from_f32(*v))
.collect();
let kernel_shape = &[1, 1, 4];
let kernel_stride = &[4, 4, 1];
let results = run_conv_transpose1d(
&input,
input_shape,
input_stride,
&kernel,
kernel_shape,
kernel_stride,
1,
1,
0,
0,
"conv_transpose1d_f16",
);
let expected = vec![1., 4., 10., 20., 25., 24., 16.]
.iter()
.map(|v| f16::from_f32(*v))
.collect::<Vec<_>>();
assert_eq!(results, expected);
}
#[test]
fn conv_transpose1d_bf16() {
let input: Vec<bf16> = vec![1.0, 2.0, 3.0, 4.0]
.iter()
.map(|v| bf16::from_f32(*v))
.collect();
let input_shape = &[1, 1, 4];
let input_stride = &[4, 4, 1];
let kernel: Vec<bf16> = vec![1.0, 2.0, 3.0, 4.0]
.iter()
.map(|v| bf16::from_f32(*v))
.collect();
let kernel_shape = &[1, 1, 4];
let kernel_stride = &[4, 4, 1];
let results = run_conv_transpose1d(
&input,
input_shape,
input_stride,
&kernel,
kernel_shape,
kernel_stride,
1,
1,
0,
0,
"conv_transpose1d_bf16",
);
let expected = vec![1., 4., 10., 20., 25., 24., 16.]
.iter()
.map(|v| bf16::from_f32(*v))
.collect::<Vec<_>>();
assert_eq!(results, expected);
}
#[test]
fn conv_transpose1d_u8() {
let input: Vec<u8> = vec![1, 2, 3, 4];
let input_shape = &[1, 1, 4];
let input_stride = &[4, 4, 1];
let kernel: Vec<u8> = vec![1, 2, 3, 4];
let kernel_shape = &[1, 1, 4];
let kernel_stride = &[4, 4, 1];
let results = run_conv_transpose1d(
&input,
input_shape,
input_stride,
&kernel,
kernel_shape,
kernel_stride,
1,
1,
0,
0,
"conv_transpose1d_u8",
);
let expected = vec![1, 4, 10, 20, 25, 24, 16];
assert_eq!(results, expected);
}
#[test]
fn conv_transpose1d_u32() {
let input: Vec<u32> = vec![1, 2, 3, 4];
let input_shape = &[1, 1, 4];
let input_stride = &[4, 4, 1];
let kernel: Vec<u32> = vec![1, 2, 3, 4];
let kernel_shape = &[1, 1, 4];
let kernel_stride = &[4, 4, 1];
let results = run_conv_transpose1d(
&input,
input_shape,
input_stride,
&kernel,
kernel_shape,
kernel_stride,
1,
1,
0,
0,
"conv_transpose1d_u32",
);
let expected = vec![1, 4, 10, 20, 25, 24, 16];
assert_eq!(results, expected);
}