mirror of
https://github.com/huggingface/candle.git
synced 2025-06-17 11:08:52 +00:00
Added a test for LeakyRelu
This commit is contained in:
@ -2808,3 +2808,81 @@ fn test_argmax() -> Result<()> {
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
// "LeakyRelu"
|
||||
#[test]
|
||||
fn test_leakyrelu() -> Result<()> {
|
||||
// tests from https://github.com/onnx/onnx/blob/main/docs/Operators.md#examples-80
|
||||
// leakyrelu
|
||||
test(
|
||||
&[-1.0, 0.0, 1.0],
|
||||
Some(0.1),
|
||||
&[-0.1, 0.0, 1.0]
|
||||
)?;
|
||||
fn test(data: impl NdArray, alpha: Option<f32>, expected: impl NdArray) -> Result<()> {
|
||||
let att_alpha = AttributeProto {
|
||||
name: "alpha".to_string(),
|
||||
ref_attr_name: "alpha".to_string(),
|
||||
i: 0,
|
||||
doc_string: "alpha".to_string(),
|
||||
r#type: 1, // FLOAT
|
||||
f: alpha.unwrap_or(0.01),
|
||||
s: vec![],
|
||||
t: None,
|
||||
g: None,
|
||||
sparse_tensor: None,
|
||||
tp: None,
|
||||
floats: vec![],
|
||||
ints: vec![],
|
||||
strings: vec![],
|
||||
tensors: vec![],
|
||||
graphs: vec![],
|
||||
sparse_tensors: vec![],
|
||||
type_protos: vec![],
|
||||
};
|
||||
let attrs = {
|
||||
let mut mut_attrs = vec![];
|
||||
if alpha.is_some() {
|
||||
mut_attrs.push(att_alpha);
|
||||
}
|
||||
mut_attrs
|
||||
};
|
||||
let manual_graph = create_model_proto_with_graph(Some(GraphProto {
|
||||
node: vec![NodeProto {
|
||||
op_type: "LeakyRelu".to_string(),
|
||||
domain: "".to_string(),
|
||||
attribute: attrs,
|
||||
input: vec![INPUT_X.to_string()],
|
||||
output: vec![OUTPUT_Z.to_string()],
|
||||
name: "".to_string(),
|
||||
doc_string: "".to_string(),
|
||||
}],
|
||||
name: "".to_string(),
|
||||
initializer: vec![],
|
||||
input: vec![],
|
||||
output: vec![ValueInfoProto {
|
||||
name: OUTPUT_Z.to_string(),
|
||||
doc_string: "".to_string(),
|
||||
r#type: None,
|
||||
}],
|
||||
value_info: vec![],
|
||||
doc_string: "".to_string(),
|
||||
sparse_initializer: vec![],
|
||||
quantization_annotation: vec![],
|
||||
}));
|
||||
let mut inputs: HashMap<String, Tensor> = HashMap::new();
|
||||
inputs.insert(INPUT_X.to_string(), Tensor::new(data, &Device::Cpu)?);
|
||||
let eval = candle_onnx::simple_eval(&manual_graph, inputs)?;
|
||||
let z = eval.get(OUTPUT_Z).expect("Output 'z' not found");
|
||||
|
||||
let expected = Tensor::new(expected, &Device::Cpu)?;
|
||||
for both in z.to_vec1::<f64>()?.iter().zip(expected.to_vec1::<f64>()?.iter()) {
|
||||
let (act, exp) = both;
|
||||
assert!(f64::abs(act - exp) < f32::EPSILON.into());
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
Reference in New Issue
Block a user