Simplify usage of the pool functions. (#662)

* Simplify usage of the pool functions.

* Small tweak.

* Attempt at using apply to simplify the convnet definition.
This commit is contained in:
Laurent Mazare
2023-08-29 19:12:16 +01:00
committed by GitHub
parent b31d41e26a
commit 2d3fcad267
9 changed files with 86 additions and 42 deletions

View File

@ -256,7 +256,7 @@ impl Tensor {
// we scale the gradient for this case).
let node_upsampled = node.upsample_nearest2d(h, w)?;
let mask = arg.eq(&node_upsampled)?.to_dtype(arg.dtype())?;
let avg = mask.avg_pool2d(*kernel_size, *stride)?;
let avg = mask.avg_pool2d_with_stride(*kernel_size, *stride)?;
let grad_arg = ((grad * avg)?.upsample_nearest2d(h, w)? * mask)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;

View File

@ -91,3 +91,36 @@ extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
pub trait ToUsize2 {
fn to_usize2(self) -> (usize, usize);
}
impl ToUsize2 for usize {
fn to_usize2(self) -> (usize, usize) {
(self, self)
}
}
impl ToUsize2 for (usize, usize) {
fn to_usize2(self) -> (usize, usize) {
self
}
}
// A simple trait defining a module with forward method using a single argument.
pub trait Module: std::fmt::Debug {
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
/// Change the module to use training mode vs eval mode.
///
/// The default implementation does nothing as this is only used for a couple modules such as
/// dropout or batch-normalization.
fn set_training(&mut self, _training: bool) {}
}
impl Module for quantized::QMatMul {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
self.forward(xs)
}
}

View File

@ -797,7 +797,18 @@ impl Tensor {
Ok(from_storage(storage, (n, c, target_h, target_w), op, false))
}
pub fn avg_pool2d(&self, kernel_size: (usize, usize), stride: (usize, usize)) -> Result<Self> {
pub fn avg_pool2d<T: crate::ToUsize2>(&self, sz: T) -> Result<Self> {
let sz = sz.to_usize2();
self.avg_pool2d_with_stride(sz, sz)
}
pub fn avg_pool2d_with_stride<T: crate::ToUsize2>(
&self,
kernel_size: T,
stride: T,
) -> Result<Self> {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
@ -813,7 +824,18 @@ impl Tensor {
Ok(from_storage(storage, (n, c, h_out, w_out), op, false))
}
pub fn max_pool2d(&self, kernel_size: (usize, usize), stride: (usize, usize)) -> Result<Self> {
pub fn max_pool2d<T: crate::ToUsize2>(&self, sz: T) -> Result<Self> {
let sz = sz.to_usize2();
self.max_pool2d_with_stride(sz, sz)
}
pub fn max_pool2d_with_stride<T: crate::ToUsize2>(
&self,
kernel_size: T,
stride: T,
) -> Result<Self> {
let kernel_size = kernel_size.to_usize2();
let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
@ -1855,6 +1877,10 @@ impl Tensor {
}
}
pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
m.forward(self)
}
pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> {
self.storage.read().unwrap()
}

View File

@ -6,14 +6,14 @@ fn avg_pool2d(dev: &Device) -> Result<()> {
1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
];
let t = Tensor::from_vec(data, (1, 1, 4, 4), dev)?;
let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?;
let pool = t.avg_pool2d(2)?.squeeze(0)?.squeeze(0)?;
assert_eq!(pool.to_vec2::<f32>()?, [[0.5f32, 1.], [1., 1.]]);
let data: Vec<f32> = vec![
1., 2., 1., 3., 0., 0., 1., 1., 1., 1., 1., 1., 5., 1., 1., 1.,
];
let t = Tensor::from_vec(data, (1, 1, 2, 8), dev)?;
let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?;
let pool = t.avg_pool2d(2)?.squeeze(0)?.squeeze(0)?;
assert_eq!(pool.to_vec2::<f32>()?, [[5. / 4., 6. / 4., 6. / 4., 1.]]);
Ok(())
}
@ -24,11 +24,11 @@ fn max_pool2d(dev: &Device) -> Result<()> {
];
let t = Tensor::from_vec(data, (1, 1, 4, 4), dev)?;
let pool = t.max_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?;
let pool = t.max_pool2d(2)?.squeeze(0)?.squeeze(0)?;
assert_eq!(pool.to_vec2::<f32>()?, [[2f32, 3.], [5., 1.]]);
let t = t.reshape((1, 1, 2, 8))?;
let pool = t.max_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?;
let pool = t.max_pool2d(2)?.squeeze(0)?.squeeze(0)?;
assert_eq!(pool.to_vec2::<f32>()?, [[2.0, 3.0, 5.0, 1.0]]);
Ok(())
}
@ -53,7 +53,7 @@ fn avg_pool2d_pytorch(dev: &Device) -> Result<()> {
dev,
)?
.reshape((1, 2, 4, 4))?;
let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?;
let pool = t.avg_pool2d(2)?.squeeze(0)?;
assert_eq!(
test_utils::to_vec3_round(&pool, 4)?,
[
@ -61,14 +61,14 @@ fn avg_pool2d_pytorch(dev: &Device) -> Result<()> {
[[0.1835, -0.1606], [0.6249, 0.3217]]
]
);
let pool = t.avg_pool2d((3, 3), (3, 3))?.squeeze(0)?;
let pool = t.avg_pool2d(3)?.squeeze(0)?;
assert_eq!(
test_utils::to_vec3_round(&pool, 4)?,
[[[0.085]], [[0.0078]]]
);
let t = t.reshape((1, 1, 4, 8))?;
let pool = t.avg_pool2d((2, 2), (2, 2))?.squeeze(0)?.squeeze(0)?;
let pool = t.avg_pool2d(2)?.squeeze(0)?.squeeze(0)?;
assert_eq!(
test_utils::to_vec2_round(&pool, 4)?,
[