mirror of
https://github.com/huggingface/candle.git
synced 2025-06-15 18:28:24 +00:00
Add PaliGemma. (#2519)
* Add PaliGemma. * PaliGemma inference loop. * Running PaliGemma example. * Tweak the prompt.
This commit is contained in:
28
candle-examples/examples/paligemma/README.md
Normal file
28
candle-examples/examples/paligemma/README.md
Normal file
@ -0,0 +1,28 @@
|
||||
# PaliGemma
|
||||
|
||||
[HuggingFace Model Card](https://huggingface.co/google/paligemma-3b-pt-224) -
|
||||
[Model Page](https://ai.google.dev/gemma/docs/paligemma)
|
||||
|
||||
```bash
|
||||
cargo run --features cuda --release --example paligemma -- \
|
||||
--prompt "caption fr" --image candle-examples/examples/yolo-v8/assets/bike.jpg
|
||||
```
|
||||
|
||||
```
|
||||
loaded image with shape Tensor[dims 1, 3, 224, 224; bf16, cuda:0]
|
||||
loaded the model in 1.267744448s
|
||||
caption fr. Un groupe de cyclistes qui sont dans la rue.
|
||||
13 tokens generated (56.52 token/s)
|
||||
```
|
||||
|
||||
```bash
|
||||
cargo run --features cuda --release --example paligemma -- \
|
||||
--prompt "caption fr" --image candle-examples/examples/flux/assets/flux-robot.jpg
|
||||
```
|
||||
|
||||
```
|
||||
loaded image with shape Tensor[dims 1, 3, 224, 224; bf16, cuda:0]
|
||||
loaded the model in 1.271492621s
|
||||
caption fr une image d' un robot sur la plage avec le mot rouillé
|
||||
15 tokens generated (62.78 token/s)
|
||||
```
|
276
candle-examples/examples/paligemma/main.rs
Normal file
276
candle-examples/examples/paligemma/main.rs
Normal file
@ -0,0 +1,276 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use clap::Parser;
|
||||
|
||||
use candle_transformers::models::paligemma::{Config, Model};
|
||||
|
||||
use candle::{DType, Device, Tensor};
|
||||
use candle_examples::token_output_stream::TokenOutputStream;
|
||||
use candle_nn::VarBuilder;
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
struct TextGeneration {
|
||||
model: Model,
|
||||
image: Tensor,
|
||||
device: Device,
|
||||
tokenizer: TokenOutputStream,
|
||||
logits_processor: LogitsProcessor,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
impl TextGeneration {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn new(
|
||||
model: Model,
|
||||
image: Tensor,
|
||||
tokenizer: Tokenizer,
|
||||
seed: u64,
|
||||
temp: Option<f64>,
|
||||
top_p: Option<f64>,
|
||||
repeat_penalty: f32,
|
||||
repeat_last_n: usize,
|
||||
device: &Device,
|
||||
) -> Self {
|
||||
let logits_processor = LogitsProcessor::new(seed, temp, top_p);
|
||||
Self {
|
||||
model,
|
||||
image,
|
||||
tokenizer: TokenOutputStream::new(tokenizer),
|
||||
logits_processor,
|
||||
repeat_penalty,
|
||||
repeat_last_n,
|
||||
device: device.clone(),
|
||||
}
|
||||
}
|
||||
|
||||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
|
||||
use std::io::Write;
|
||||
self.tokenizer.clear();
|
||||
let mut tokens = self
|
||||
.tokenizer
|
||||
.tokenizer()
|
||||
.encode(prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
for &t in tokens.iter() {
|
||||
if let Some(t) = self.tokenizer.next_token(t)? {
|
||||
print!("{t}")
|
||||
}
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
|
||||
let mut generated_tokens = 0usize;
|
||||
let eos_token = match self.tokenizer.get_token("<eos>") {
|
||||
Some(token) => token,
|
||||
None => anyhow::bail!("cannot find the <eos> token"),
|
||||
};
|
||||
let start_gen = std::time::Instant::now();
|
||||
for index in 0..sample_len {
|
||||
let context_size = if index > 0 { 1 } else { tokens.len() };
|
||||
let start_pos = tokens.len().saturating_sub(context_size);
|
||||
let ctxt = &tokens[start_pos..];
|
||||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
|
||||
let logits = if index > 0 {
|
||||
self.model.forward(&input)?
|
||||
} else {
|
||||
self.model.setup(&self.image, &input)?
|
||||
};
|
||||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
|
||||
let logits = if self.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
self.repeat_penalty,
|
||||
&tokens[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token = self.logits_processor.sample(&logits)?;
|
||||
tokens.push(next_token);
|
||||
generated_tokens += 1;
|
||||
if next_token == eos_token {
|
||||
break;
|
||||
}
|
||||
if let Some(t) = self.tokenizer.next_token(next_token)? {
|
||||
print!("{t}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start_gen.elapsed();
|
||||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
|
||||
print!("{rest}");
|
||||
}
|
||||
std::io::stdout().flush()?;
|
||||
println!(
|
||||
"\n{generated_tokens} tokens generated ({:.2} token/s)",
|
||||
generated_tokens as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Parser, Debug)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Run on CPU rather than on GPU.
|
||||
#[arg(long)]
|
||||
cpu: bool,
|
||||
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long)]
|
||||
temperature: Option<f64>,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// The seed to use when generating random samples.
|
||||
#[arg(long, default_value_t = 299792458)]
|
||||
seed: u64,
|
||||
|
||||
/// The length of the sample to generate (in tokens).
|
||||
#[arg(long, short = 'n', default_value_t = 10000)]
|
||||
sample_len: usize,
|
||||
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long, default_value = "main")]
|
||||
revision: String,
|
||||
|
||||
#[arg(long)]
|
||||
tokenizer_file: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_files: Option<String>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
|
||||
#[arg(long)]
|
||||
image: String,
|
||||
}
|
||||
|
||||
fn load_image<T: AsRef<std::path::Path>>(path: T, image_size: usize) -> anyhow::Result<Tensor> {
|
||||
let img = image::ImageReader::open(path)?.decode()?;
|
||||
let (height, width) = (image_size, image_size);
|
||||
let img = img.resize_to_fill(
|
||||
width as u32,
|
||||
height as u32,
|
||||
image::imageops::FilterType::Triangle,
|
||||
);
|
||||
let img = img.to_rgb8();
|
||||
let img = img.into_raw();
|
||||
let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)?
|
||||
.permute((2, 0, 1))?
|
||||
.to_dtype(DType::F32)?
|
||||
.affine(2. / 255., -1.)?;
|
||||
Ok(img)
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
let _guard = if args.tracing {
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
println!(
|
||||
"avx: {}, neon: {}, simd128: {}, f16c: {}",
|
||||
candle::utils::with_avx(),
|
||||
candle::utils::with_neon(),
|
||||
candle::utils::with_simd128(),
|
||||
candle::utils::with_f16c()
|
||||
);
|
||||
println!(
|
||||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
|
||||
args.temperature.unwrap_or(0.),
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n
|
||||
);
|
||||
|
||||
let start = std::time::Instant::now();
|
||||
let api = Api::new()?;
|
||||
let model_id = match &args.model_id {
|
||||
Some(model_id) => model_id.to_string(),
|
||||
None => "google/paligemma-3b-mix-224".to_string(),
|
||||
};
|
||||
let repo = api.repo(Repo::with_revision(
|
||||
model_id,
|
||||
RepoType::Model,
|
||||
args.revision,
|
||||
));
|
||||
let tokenizer_filename = match args.tokenizer_file {
|
||||
Some(file) => std::path::PathBuf::from(file),
|
||||
None => repo.get("tokenizer.json")?,
|
||||
};
|
||||
let filenames = match args.weight_files {
|
||||
Some(files) => files
|
||||
.split(',')
|
||||
.map(std::path::PathBuf::from)
|
||||
.collect::<Vec<_>>(),
|
||||
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?,
|
||||
};
|
||||
println!("retrieved the files in {:?}", start.elapsed());
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
|
||||
let device = candle_examples::device(args.cpu)?;
|
||||
let dtype = if device.is_cuda() {
|
||||
DType::BF16
|
||||
} else {
|
||||
DType::F32
|
||||
};
|
||||
let config = Config::paligemma_3b_224();
|
||||
let image = load_image(&args.image, config.vision_config.image_size)?
|
||||
.to_device(&device)?
|
||||
.to_dtype(dtype)?
|
||||
.unsqueeze(0)?;
|
||||
println!("loaded image with shape {:?}", image);
|
||||
let start = std::time::Instant::now();
|
||||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
|
||||
let model = Model::new(&config, vb)?;
|
||||
println!("loaded the model in {:?}", start.elapsed());
|
||||
|
||||
let mut pipeline = TextGeneration::new(
|
||||
model,
|
||||
image,
|
||||
tokenizer,
|
||||
args.seed,
|
||||
args.temperature,
|
||||
args.top_p,
|
||||
args.repeat_penalty,
|
||||
args.repeat_last_n,
|
||||
&device,
|
||||
);
|
||||
let prompt = format!("{}\n", args.prompt);
|
||||
pipeline.run(&prompt, args.sample_len)?;
|
||||
Ok(())
|
||||
}
|
@ -362,6 +362,10 @@ impl Model {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn embed_tokens(&self) -> &candle_nn::Embedding {
|
||||
&self.embed_tokens
|
||||
}
|
||||
|
||||
fn prepare_decoder_attention_mask(
|
||||
&self,
|
||||
b_size: usize,
|
||||
@ -400,6 +404,22 @@ impl Model {
|
||||
.apply(&self.lm_head)
|
||||
}
|
||||
|
||||
pub fn forward_embeds(
|
||||
&mut self,
|
||||
xs: &Tensor,
|
||||
attn_mask: Option<&Tensor>,
|
||||
seqlen_offset: usize,
|
||||
) -> Result<Tensor> {
|
||||
let (_, seq_len, _) = xs.dims3()?;
|
||||
let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
|
||||
for layer in self.layers.iter_mut() {
|
||||
xs = layer.forward(&xs, attn_mask, seqlen_offset)?
|
||||
}
|
||||
xs.narrow(1, seq_len - 1, 1)?
|
||||
.apply(&self.norm)?
|
||||
.apply(&self.lm_head)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
for layer in self.layers.iter_mut() {
|
||||
layer.clear_kv_cache()
|
||||
|
@ -46,6 +46,7 @@ pub mod moondream;
|
||||
pub mod mpt;
|
||||
pub mod olmo;
|
||||
pub mod openclip;
|
||||
pub mod paligemma;
|
||||
pub mod parler_tts;
|
||||
pub mod persimmon;
|
||||
pub mod phi;
|
||||
|
109
candle-transformers/src/models/paligemma.rs
Normal file
109
candle-transformers/src/models/paligemma.rs
Normal file
@ -0,0 +1,109 @@
|
||||
use crate::models::{gemma, siglip};
|
||||
use candle::{Module, Result, Tensor};
|
||||
use candle_nn::{linear, Linear, VarBuilder};
|
||||
|
||||
#[derive(serde::Deserialize, Clone, Debug)]
|
||||
pub struct Config {
|
||||
pub vision_config: siglip::VisionConfig,
|
||||
pub text_config: gemma::Config,
|
||||
pub projection_dim: usize,
|
||||
}
|
||||
|
||||
impl Config {
|
||||
pub fn paligemma_3b_224() -> Self {
|
||||
// https://huggingface.co/google/paligemma-3b-pt-224/blob/main/config.json
|
||||
Self {
|
||||
vision_config: siglip::VisionConfig::paligemma_3b_224(),
|
||||
text_config: gemma::Config {
|
||||
hidden_size: 2048,
|
||||
intermediate_size: 16384,
|
||||
num_attention_heads: 8,
|
||||
num_hidden_layers: 18,
|
||||
num_key_value_heads: 1,
|
||||
vocab_size: 257216,
|
||||
// Default values.
|
||||
rope_theta: 10000.,
|
||||
head_dim: 256,
|
||||
hidden_act: Some(candle_nn::Activation::GeluPytorchTanh),
|
||||
hidden_activation: None,
|
||||
attention_bias: false,
|
||||
max_position_embeddings: 8192,
|
||||
rms_norm_eps: 1e-6,
|
||||
},
|
||||
projection_dim: 2048,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct MultiModalProjector {
|
||||
linear: Linear,
|
||||
}
|
||||
|
||||
impl MultiModalProjector {
|
||||
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let linear = linear(
|
||||
cfg.vision_config.hidden_size,
|
||||
cfg.projection_dim,
|
||||
vb.pp("linear"),
|
||||
)?;
|
||||
Ok(Self { linear })
|
||||
}
|
||||
}
|
||||
|
||||
impl Module for MultiModalProjector {
|
||||
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
|
||||
xs.apply(&self.linear)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Model {
|
||||
pos: usize,
|
||||
vision_tower: siglip::VisionModel,
|
||||
multi_modal_projector: MultiModalProjector,
|
||||
language_model: gemma::Model,
|
||||
}
|
||||
|
||||
impl Model {
|
||||
pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
|
||||
let vision_tower = siglip::VisionModel::new(
|
||||
&cfg.vision_config,
|
||||
false,
|
||||
vb.pp("vision_tower.vision_model"),
|
||||
)?;
|
||||
let multi_modal_projector = MultiModalProjector::new(cfg, vb.pp("multi_modal_projector"))?;
|
||||
let language_model = gemma::Model::new(false, &cfg.text_config, vb.pp("language_model"))?;
|
||||
Ok(Self {
|
||||
pos: 0,
|
||||
language_model,
|
||||
vision_tower,
|
||||
multi_modal_projector,
|
||||
})
|
||||
}
|
||||
|
||||
pub fn setup(&mut self, pixel_values: &Tensor, input_ids: &Tensor) -> Result<Tensor> {
|
||||
self.clear_kv_cache();
|
||||
let image_features = self
|
||||
.vision_tower
|
||||
.forward(pixel_values)?
|
||||
.apply(&self.multi_modal_projector)?;
|
||||
let image_features = crate::models::clip::div_l2_norm(&image_features)?;
|
||||
let text_features = self.language_model.embed_tokens().forward(input_ids)?;
|
||||
let input_embeds = Tensor::cat(&[image_features, text_features], 1)?;
|
||||
self.pos = input_embeds.dim(1)?;
|
||||
self.language_model.forward_embeds(&input_embeds, None, 0)
|
||||
}
|
||||
|
||||
pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
|
||||
let pos = self.pos;
|
||||
let seq_len = input_ids.dim(1)?;
|
||||
self.pos = pos + seq_len;
|
||||
self.language_model.forward(input_ids, pos)
|
||||
}
|
||||
|
||||
pub fn clear_kv_cache(&mut self) {
|
||||
self.pos = 0;
|
||||
self.language_model.clear_kv_cache()
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user