Propagate the layout refactoring.

This commit is contained in:
laurent
2023-06-28 13:42:23 +01:00
parent 30b355ccd2
commit 303b853098
5 changed files with 130 additions and 129 deletions

View File

@ -24,21 +24,22 @@ fn wcond<T: Copy>(
f: &[T],
layout_f: &Layout,
) -> Vec<T> {
if shape.is_contiguous(stride) && shape.is_contiguous(stride_t) && shape.is_contiguous(stride_f)
{
let elem_count = shape.elem_count();
let pred = &pred[..elem_count];
let t = &t[..elem_count];
let f = &f[..elem_count];
if layout.is_contiguous() && layout_t.is_contiguous() && layout_f.is_contiguous() {
let elem_count = layout.shape().elem_count();
let offset = layout.start_offset();
let offset_t = layout_t.start_offset();
let offset_f = layout_f.start_offset();
let pred = &pred[offset..offset + elem_count];
let t = &t[offset_t..offset_t + elem_count];
let f = &f[offset_f..offset_f + elem_count];
pred.iter()
.zip(t.iter().zip(f.iter()))
.map(|(&p, (&t, &f))| if p > 0 { t } else { f })
.collect::<Vec<_>>()
} else {
let dims = shape.dims();
let it_p = StridedIndex::new(dims, stride);
let it_t = StridedIndex::new(dims, stride_t);
let it_f = StridedIndex::new(dims, stride_f);
let it_p = StridedIndex::new(layout);
let it_t = StridedIndex::new(layout_t);
let it_f = StridedIndex::new(layout_f);
it_p.zip(it_t.zip(it_f))
.map(|(i_p, (i_t, i_f))| if pred[i_p] > 0 { t[i_t] } else { f[i_f] })
.collect::<Vec<_>>()
@ -107,13 +108,13 @@ fn binary_map<T: Copy, F: FnMut(T, T) -> T>(
fn take_impl1<T: Copy>(
vs: &[T],
ids: &[u32],
shape: &Shape,
stride: &[usize],
layout: &Layout,
vocab_size: usize,
hidden_size: usize,
) -> Result<Vec<T>> {
let mut values = Vec::with_capacity(shape.elem_count() * hidden_size);
for index in StridedIndex::new(shape.dims(), stride) {
// TODO: Optimize for the case where ids are contiguous.
let mut values = Vec::with_capacity(layout.shape().elem_count() * hidden_size);
for index in StridedIndex::new(layout) {
let index = ids[index].try_into()?;
if index >= vocab_size {
return Err(Error::InvalidIndex {
@ -132,16 +133,14 @@ fn copy_strided_src_<T: Copy + std::fmt::Display>(
src: &[T],
dst: &mut [T],
dst_offset: usize,
src_shape: &Shape,
src_stride: &[usize],
src_offset: usize,
src_l: &Layout,
) {
let src = &src[src_offset..];
if src_shape.is_contiguous(src_stride) {
let src = &src[src_l.start_offset()..];
if src_l.is_contiguous() {
let elem_to_copy = (dst.len() - dst_offset).min(src.len());
dst[dst_offset..dst_offset + elem_to_copy].copy_from_slice(&src[..elem_to_copy])
} else {
let src_indexes = StridedIndex::new(src_shape.dims(), src_stride);
let src_indexes = StridedIndex::new(src_l);
for (dst_index, src_index) in src_indexes.enumerate() {
let dst_index = dst_index + dst_offset;
if dst_index >= dst.len() {
@ -556,29 +555,14 @@ impl CpuStorage {
&self,
dst: &mut Self,
dst_offset: usize,
src_shape: &Shape,
src_stride: &[usize],
src_offset: usize,
src_l: Layout,
) -> Result<()> {
if src_shape.rank() != src_stride.len() {
panic!("incoherent shape and strides {src_shape:?} {src_stride:?}")
}
match (self, dst) {
(Self::U32(src), Self::U32(dst)) => {
copy_strided_src_(src, dst, dst_offset, src_shape, src_stride, src_offset)
}
(Self::BF16(src), Self::BF16(dst)) => {
copy_strided_src_(src, dst, dst_offset, src_shape, src_stride, src_offset)
}
(Self::F16(src), Self::F16(dst)) => {
copy_strided_src_(src, dst, dst_offset, src_shape, src_stride, src_offset)
}
(Self::F32(src), Self::F32(dst)) => {
copy_strided_src_(src, dst, dst_offset, src_shape, src_stride, src_offset)
}
(Self::F64(src), Self::F64(dst)) => {
copy_strided_src_(src, dst, dst_offset, src_shape, src_stride, src_offset)
}
(Self::U32(src), Self::U32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::BF16(src), Self::BF16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F16(src), Self::F16(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F32(src), Self::F32(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(Self::F64(src), Self::F64(dst)) => copy_strided_src_(src, dst, dst_offset, src_l),
(_, dst) => {
// This should be covered by the dtype check above.
return Err(Error::DTypeMismatchBinaryOp {
@ -593,34 +577,33 @@ impl CpuStorage {
pub(crate) fn where_cond(
&self,
shape: &Shape,
stride: &[usize],
layout: &Layout,
t: &Self,
stride_t: &[usize],
layout_t: &Layout,
f: &Self,
stride_f: &[usize],
layout_f: &Layout,
) -> Result<Self> {
// TODO: Support types that could be casted to a boolean.
let pred = self.as_slice::<u32>()?;
match (t, f) {
(Self::BF16(t), Self::BF16(f)) => {
let data = wcond(pred, shape, stride, t, stride_t, f, stride_f);
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::BF16(data))
}
(Self::F16(t), Self::F16(f)) => {
let data = wcond(pred, shape, stride, t, stride_t, f, stride_f);
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::F16(data))
}
(Self::F32(t), Self::F32(f)) => {
let data = wcond(pred, shape, stride, t, stride_t, f, stride_f);
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::F32(data))
}
(Self::F64(t), Self::F64(f)) => {
let data = wcond(pred, shape, stride, t, stride_t, f, stride_f);
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::F64(data))
}
(Self::U32(t), Self::U32(f)) => {
let data = wcond(pred, shape, stride, t, stride_t, f, stride_f);
let data = wcond(pred, layout, t, layout_t, f, layout_f);
Ok(Self::U32(data))
}
_ => Err(Error::DTypeMismatchBinaryOp {
@ -631,16 +614,15 @@ impl CpuStorage {
}
}
pub(crate) fn embedding_impl(
pub(crate) fn embedding(
&self,
shape: &Shape,
stride: &[usize],
layout: &Layout,
vs: &Self,
hidden_size: usize,
vocab_size: usize,
) -> Result<Self> {
let ids = self.as_slice::<u32>()?;
map1!(vs, take_impl1, ids, shape, stride, vocab_size, hidden_size)
map1!(vs, take_impl1, ids, layout, vocab_size, hidden_size)
}
pub(crate) fn matmul_impl(

View File

@ -9,16 +9,20 @@ pub struct Layout {
}
impl Layout {
pub fn contiguous<S: Into<Shape>>(shape: S) -> Self {
pub fn contiguous_with_offset<S: Into<Shape>>(shape: S, start_offset: usize) -> Self {
let shape = shape.into();
let stride = shape.stride_contiguous();
Self {
shape,
stride,
start_offset: 0,
start_offset,
}
}
pub fn contiguous<S: Into<Shape>>(shape: S) -> Self {
Self::contiguous_with_offset(shape, 0)
}
pub fn dims(&self) -> &[usize] {
self.shape.dims()
}
@ -45,7 +49,7 @@ impl Layout {
self.shape.is_fortran_contiguous(&self.stride)
}
pub fn narrow(&self, dim: usize, start: usize, length: usize) -> Result<Self> {
pub(crate) fn narrow(&self, dim: usize, start: usize, length: usize) -> Result<Self> {
let dims = self.shape().dims();
if dim >= dims.len() {
Err(Error::UnexpectedNumberOfDims {
@ -65,4 +69,61 @@ impl Layout {
start_offset: self.start_offset + self.stride[dim] * start,
})
}
pub(crate) fn transpose(&self, dim1: usize, dim2: usize) -> Result<Self> {
let rank = self.shape.rank();
if rank <= dim1 || rank <= dim2 {
return Err(Error::UnexpectedNumberOfDims {
expected: usize::max(dim1, dim2),
got: rank,
shape: self.shape().clone(),
});
}
let mut stride = self.stride().to_vec();
let mut dims = self.shape().dims().to_vec();
dims.swap(dim1, dim2);
stride.swap(dim1, dim2);
Ok(Self {
shape: Shape::from(dims),
stride,
start_offset: self.start_offset,
})
}
pub fn broadcast_as<S: Into<Shape>>(&self, shape: S) -> Result<Self> {
let shape = shape.into();
if shape.rank() < self.shape().rank() {
Err(Error::BroadcastIncompatibleShapes {
src_shape: self.shape().clone(),
dst_shape: shape,
})?
}
let added_dims = shape.rank() - self.shape().rank();
let mut stride = vec![0; added_dims];
for (&dst_dim, (&src_dim, &src_stride)) in shape.dims()[added_dims..]
.iter()
.zip(self.dims().iter().zip(self.stride()))
{
let s = if dst_dim == src_dim {
src_stride
} else if src_dim != 1 {
return Err(Error::BroadcastIncompatibleShapes {
src_shape: self.shape().clone(),
dst_shape: shape,
});
} else {
0
};
stride.push(s)
}
Ok(Self {
shape,
stride,
start_offset: self.start_offset,
})
}
pub(crate) fn strided_index(&self) -> crate::StridedIndex {
crate::StridedIndex::new(&self)
}
}

View File

@ -145,7 +145,7 @@ impl Storage {
pub(crate) fn where_cond(
&self,
layout: &Shape,
layout: &Layout,
t: &Self,
layout_t: &Layout,
f: &Self,
@ -171,7 +171,7 @@ impl Storage {
}
}
pub(crate) fn embedding_impl(
pub(crate) fn embedding(
&self,
layout: &Layout,
rhs: &Self,
@ -181,11 +181,11 @@ impl Storage {
self.same_device(rhs, "embedding")?;
match (self, rhs) {
(Storage::Cpu(lhs), Storage::Cpu(rhs)) => {
let storage = lhs.embedding_impl(layout, rhs, hidden_size, vocab_size)?;
let storage = lhs.embedding(layout, rhs, hidden_size, vocab_size)?;
Ok(Self::Cpu(storage))
}
(Self::Cuda(lhs), Self::Cuda(rhs)) => {
let storage = lhs.embedding_impl(layout, rhs, hidden_size, vocab_size)?;
let storage = lhs.embedding(layout, rhs, hidden_size, vocab_size)?;
Ok(Self::Cuda(storage))
}
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
@ -227,15 +227,11 @@ impl Storage {
&self,
dst: &mut Self,
dst_offset: usize,
src_layout: &Layout,
src_l: &Layout,
) -> Result<()> {
match (self, dst) {
(Self::Cpu(src), Self::Cpu(dst)) => {
src.copy_strided_src(dst, dst_offset, src_layout, src_offset)
}
(Self::Cuda(src), Self::Cuda(dst)) => {
Ok(src.copy_strided_src(dst, dst_offset, src_layout, src_offset)?)
}
(Self::Cpu(src), Self::Cpu(dst)) => src.copy_strided_src(dst, dst_offset, src_l),
(Self::Cuda(src), Self::Cuda(dst)) => Ok(src.copy_strided_src(dst, dst_offset, src_l)?),
(lhs, rhs) => Err(Error::DeviceMismatchBinaryOp {
lhs: lhs.device().location(),
rhs: rhs.device().location(),

View File

@ -1,15 +1,17 @@
use crate::Layout;
/// An iterator over offset position for items of an N-dimensional arrays stored in a
/// flat buffer using some potential strides.
#[derive(Debug)]
pub(crate) struct StridedIndex<'a> {
next_storage_index: Option<usize>,
multi_index: Vec<usize>,
dims: &'a [usize],
stride: &'a [usize],
layout: &'a Layout,
}
impl<'a> StridedIndex<'a> {
pub(crate) fn new(dims: &'a [usize], stride: &'a [usize]) -> Self {
pub(crate) fn new(layout: &'a Layout) -> Self {
let dims = layout.dims();
let elem_count: usize = dims.iter().product();
let next_storage_index = if elem_count == 0 {
None
@ -20,8 +22,7 @@ impl<'a> StridedIndex<'a> {
StridedIndex {
next_storage_index,
multi_index: vec![0; dims.len()],
dims,
stride,
layout,
}
}
}
@ -35,7 +36,12 @@ impl<'a> Iterator for StridedIndex<'a> {
Some(storage_index) => storage_index,
};
let mut updated = false;
for (multi_i, max_i) in self.multi_index.iter_mut().zip(self.dims.iter()).rev() {
for (multi_i, max_i) in self
.multi_index
.iter_mut()
.zip(self.layout.dims().iter())
.rev()
{
let next_i = *multi_i + 1;
if next_i < *max_i {
*multi_i = next_i;
@ -49,9 +55,10 @@ impl<'a> Iterator for StridedIndex<'a> {
let next_storage_index = self
.multi_index
.iter()
.zip(self.stride.iter())
.zip(self.layout.stride().iter())
.map(|(&x, &y)| x * y)
.sum();
.sum::<usize>()
+ self.layout.start_offset();
Some(next_storage_index)
} else {
None

View File

@ -481,13 +481,9 @@ impl Tensor {
let ids_shape = ids.shape();
let seq_len = ids_shape.r1()?;
let (vocab_size, hidden_size) = rhs.shape().r2()?;
let storage = ids.storage.embedding_impl(
ids.layout(),
&ids.stride,
&rhs.storage,
hidden_size,
vocab_size,
)?;
let storage = ids
.storage
.embedding(ids.layout(), &rhs.storage, hidden_size, vocab_size)?;
let shape: Shape = (seq_len, hidden_size).into();
let op = if ids.track_op() || rhs.track_op() {
Some(Op::Embedding(ids.clone(), rhs.clone()))
@ -498,7 +494,7 @@ impl Tensor {
}
pub(crate) fn strided_index(&self) -> crate::StridedIndex {
crate::StridedIndex::new(self.dims(), self.stride())
self.layout.strided_index()
}
/// Returns data from the underlying storage, this does not take the strides
@ -591,7 +587,7 @@ impl Tensor {
}
pub fn shape(&self) -> &Shape {
&self.shape
&self.layout().shape()
}
pub fn dims(&self) -> &[usize] {
@ -682,18 +678,6 @@ impl Tensor {
/// Returns a tensor that is a transposed version of the input, the given dimensions are
/// swapped.
pub fn transpose(&self, dim1: usize, dim2: usize) -> Result<Tensor> {
let rank = self.rank();
if rank <= dim1 || rank <= dim2 {
return Err(Error::UnexpectedNumberOfDims {
expected: usize::max(dim1, dim2),
got: rank,
shape: self.shape().clone(),
});
}
let mut stride = self.stride().to_vec();
let mut dims = self.shape().dims().to_vec();
dims.swap(dim1, dim2);
stride.swap(dim1, dim2);
let op = if self.track_op() {
Some(Op::Transpose(self.clone(), dim1, dim2))
} else {
@ -702,8 +686,7 @@ impl Tensor {
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
shape: Shape::from(dims),
stride,
layout: self.layout.transpose(dim1, dim2)?,
op,
is_variable: false,
};
@ -795,36 +778,10 @@ impl Tensor {
} else {
None
};
let shape = shape.into();
if shape.rank() < self.rank() {
return Err(Error::BroadcastIncompatibleShapes {
src_shape: self.shape().clone(),
dst_shape: shape,
});
}
let added_dims = shape.rank() - self.rank();
let mut stride = vec![0; added_dims];
for (&dst_dim, (&src_dim, &src_stride)) in shape.dims()[added_dims..]
.iter()
.zip(self.dims().iter().zip(self.stride()))
{
let s = if dst_dim == src_dim {
src_stride
} else if src_dim != 1 {
return Err(Error::BroadcastIncompatibleShapes {
src_shape: self.shape().clone(),
dst_shape: shape,
});
} else {
0
};
stride.push(s)
}
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
shape,
stride,
layout: self.layout.broadcast_as(shape)?,
op,
is_variable: false,
};
@ -888,12 +845,10 @@ impl Tensor {
None
};
if self.is_contiguous() {
let stride = shape.stride_contiguous();
let tensor_ = Tensor_ {
id: TensorId::new(),
storage: self.storage.clone(),
shape,
stride,
layout: Layout::contiguous_with_offset(shape, self.layout.start_offset()),
op,
is_variable: false,
};