mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 10:38:54 +00:00
Blip attention mask + readme (#1146)
* Add the attention mask to the blip model. * Add a readme.
This commit is contained in:
@ -105,7 +105,12 @@ impl TextSelfAttention {
|
||||
.permute((0, 2, 1, 3))
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor, encoder_hidden_states: Option<&Tensor>) -> Result<Tensor> {
|
||||
fn forward(
|
||||
&self,
|
||||
xs: &Tensor,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
attention_mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let query = self
|
||||
.transpose_for_scores(&self.query.forward(xs)?)?
|
||||
.contiguous()?;
|
||||
@ -127,6 +132,10 @@ impl TextSelfAttention {
|
||||
let value = value.contiguous()?;
|
||||
let attention_scores = query.matmul(&key.t()?)?;
|
||||
let attention_scores = (attention_scores * self.attention_scale)?;
|
||||
let attention_scores = match attention_mask {
|
||||
Some(mask) => attention_scores.broadcast_add(mask)?,
|
||||
None => attention_scores,
|
||||
};
|
||||
let attention_probs = candle_nn::ops::softmax_last_dim(&attention_scores)?;
|
||||
attention_probs
|
||||
.matmul(&value)?
|
||||
@ -166,8 +175,15 @@ impl TextAttention {
|
||||
Ok(Self { self_, output })
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor, encoder_hidden_states: Option<&Tensor>) -> Result<Tensor> {
|
||||
let self_outputs = self.self_.forward(xs, encoder_hidden_states)?;
|
||||
fn forward(
|
||||
&self,
|
||||
xs: &Tensor,
|
||||
encoder_hidden_states: Option<&Tensor>,
|
||||
attention_mask: Option<&Tensor>,
|
||||
) -> Result<Tensor> {
|
||||
let self_outputs = self
|
||||
.self_
|
||||
.forward(xs, encoder_hidden_states, attention_mask)?;
|
||||
self.output.forward(&self_outputs, xs)
|
||||
}
|
||||
}
|
||||
@ -238,10 +254,15 @@ impl TextLayer {
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
|
||||
let attention_output = self.attention.forward(xs, None)?;
|
||||
fn forward(
|
||||
&self,
|
||||
xs: &Tensor,
|
||||
encoder_hidden_states: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
) -> Result<Tensor> {
|
||||
let attention_output = self.attention.forward(xs, None, Some(attention_mask))?;
|
||||
let attention_output = match &self.cross_attention {
|
||||
Some(ca) => ca.forward(&attention_output, Some(encoder_hidden_states))?,
|
||||
Some(ca) => ca.forward(&attention_output, Some(encoder_hidden_states), None)?,
|
||||
None => candle::bail!("expected some cross-attn"),
|
||||
};
|
||||
let intermediate_output = self.intermediate.forward(&attention_output)?;
|
||||
@ -265,10 +286,15 @@ impl TextEncoder {
|
||||
Ok(Self { layers })
|
||||
}
|
||||
|
||||
fn forward(&self, xs: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
|
||||
fn forward(
|
||||
&self,
|
||||
xs: &Tensor,
|
||||
encoder_hidden_states: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
) -> Result<Tensor> {
|
||||
let mut xs = xs.clone();
|
||||
for layer in self.layers.iter() {
|
||||
xs = layer.forward(&xs, encoder_hidden_states)?
|
||||
xs = layer.forward(&xs, encoder_hidden_states, attention_mask)?
|
||||
}
|
||||
Ok(xs)
|
||||
}
|
||||
@ -384,11 +410,16 @@ impl TextModel {
|
||||
})
|
||||
}
|
||||
|
||||
fn forward(&self, input_ids: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
|
||||
fn forward(
|
||||
&self,
|
||||
input_ids: &Tensor,
|
||||
encoder_hidden_states: &Tensor,
|
||||
attention_mask: &Tensor,
|
||||
) -> Result<Tensor> {
|
||||
let embedding_output = self.embeddings.forward(input_ids)?;
|
||||
let sequence_output = self
|
||||
.encoder
|
||||
.forward(&embedding_output, encoder_hidden_states)?;
|
||||
let sequence_output =
|
||||
self.encoder
|
||||
.forward(&embedding_output, encoder_hidden_states, attention_mask)?;
|
||||
// We're interested in the sequence-output rather than the pooled-output.
|
||||
Ok(sequence_output)
|
||||
}
|
||||
@ -408,7 +439,12 @@ impl TextLMHeadModel {
|
||||
}
|
||||
|
||||
pub fn forward(&self, input_ids: &Tensor, encoder_hidden_states: &Tensor) -> Result<Tensor> {
|
||||
let sequence_output = self.bert.forward(input_ids, encoder_hidden_states)?;
|
||||
let seq_len = input_ids.dim(1)?;
|
||||
let mask: Vec<_> = (0..seq_len)
|
||||
.flat_map(|i| (0..seq_len).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
|
||||
.collect();
|
||||
let mask = Tensor::from_vec(mask, (seq_len, seq_len), input_ids.device())?;
|
||||
let sequence_output = self.bert.forward(input_ids, encoder_hidden_states, &mask)?;
|
||||
let prediction_scores = self.cls.forward(&sequence_output)?;
|
||||
// return_logits is false so we don't discard the last sequence element.
|
||||
Ok(prediction_scores)
|
||||
|
Reference in New Issue
Block a user