Stable Diffusion Turbo Support (#1395)

* Add support for SD Turbo

* Set Leading as default in euler_ancestral discrete

* Use the appropriate default values for n_steps and guidance_scale.

---------

Co-authored-by: Laurent <laurent.mazare@gmail.com>
This commit is contained in:
Edwin Cheng
2023-12-03 15:37:10 +08:00
committed by GitHub
parent dd40edfe73
commit 37bf1ed012
6 changed files with 259 additions and 67 deletions

View File

@ -8,7 +8,10 @@
///
/// [kd]: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L72
use super::{
schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType, TimestepSpacing},
schedulers::{
betas_for_alpha_bar, BetaSchedule, PredictionType, Scheduler, SchedulerConfig,
TimestepSpacing,
},
utils::interp,
};
use candle::{bail, Error, Result, Tensor};
@ -43,11 +46,20 @@ impl Default for EulerAncestralDiscreteSchedulerConfig {
steps_offset: 1,
prediction_type: PredictionType::Epsilon,
train_timesteps: 1000,
timestep_spacing: TimestepSpacing::Trailing,
timestep_spacing: TimestepSpacing::Leading,
}
}
}
impl SchedulerConfig for EulerAncestralDiscreteSchedulerConfig {
fn build(&self, inference_steps: usize) -> Result<Box<dyn Scheduler>> {
Ok(Box::new(EulerAncestralDiscreteScheduler::new(
inference_steps,
*self,
)?))
}
}
/// The EulerAncestral Discrete scheduler.
#[derive(Debug, Clone)]
pub struct EulerAncestralDiscreteScheduler {
@ -138,8 +150,10 @@ impl EulerAncestralDiscreteScheduler {
config,
})
}
}
pub fn timesteps(&self) -> &[usize] {
impl Scheduler for EulerAncestralDiscreteScheduler {
fn timesteps(&self) -> &[usize] {
self.timesteps.as_slice()
}
@ -147,7 +161,7 @@ impl EulerAncestralDiscreteScheduler {
/// depending on the current timestep.
///
/// Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm
pub fn scale_model_input(&self, sample: Tensor, timestep: usize) -> Result<Tensor> {
fn scale_model_input(&self, sample: Tensor, timestep: usize) -> Result<Tensor> {
let step_index = match self.timesteps.iter().position(|&t| t == timestep) {
Some(i) => i,
None => bail!("timestep out of this schedulers bounds: {timestep}"),
@ -162,7 +176,7 @@ impl EulerAncestralDiscreteScheduler {
}
/// Performs a backward step during inference.
pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
let step_index = self
.timesteps
.iter()
@ -197,7 +211,7 @@ impl EulerAncestralDiscreteScheduler {
prev_sample + noise * sigma_up
}
pub fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
let step_index = self
.timesteps
.iter()
@ -212,7 +226,7 @@ impl EulerAncestralDiscreteScheduler {
original + (noise * *sigma)?
}
pub fn init_noise_sigma(&self) -> f64 {
fn init_noise_sigma(&self) -> f64 {
match self.config.timestep_spacing {
TimestepSpacing::Trailing | TimestepSpacing::Linspace => self.init_noise_sigma,
TimestepSpacing::Leading => (self.init_noise_sigma.powi(2) + 1.0).sqrt(),