Move the common quantized-nn code to a shared module. (#1063)

This commit is contained in:
Laurent Mazare
2023-10-09 06:22:22 +01:00
committed by GitHub
parent 59ab6d7832
commit 392fe02fba
7 changed files with 100 additions and 166 deletions

View File

@ -2,5 +2,6 @@ pub mod generation;
pub mod models; pub mod models;
pub mod object_detection; pub mod object_detection;
pub mod pipelines; pub mod pipelines;
pub mod quantized_nn;
pub mod quantized_var_builder; pub mod quantized_var_builder;
pub mod utils; pub mod utils;

View File

@ -1,5 +1,4 @@
use crate::models::quantized_t5::Embedding; use crate::quantized_nn::{linear_no_bias, Embedding, Linear, RmsNorm};
use crate::models::with_tracing::QMatMul;
pub use crate::quantized_var_builder::VarBuilder; pub use crate::quantized_var_builder::VarBuilder;
use candle::{DType, Device, Module, Result, Tensor, D}; use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::Activation; use candle_nn::Activation;
@ -7,44 +6,6 @@ use std::sync::Arc;
pub use crate::models::mistral::Config; pub use crate::models::mistral::Config;
#[derive(Debug)]
struct Linear {
weight: QMatMul,
}
impl Module for Linear {
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
x.apply(&self.weight)
}
}
fn linear_no_bias(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> {
let weight = QMatMul::new(in_dim, out_dim, vb)?;
Ok(Linear { weight })
}
#[derive(Debug)]
struct RmsNorm {
inner: candle_nn::RmsNorm,
span: tracing::Span,
}
impl RmsNorm {
fn new(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
let inner = candle_nn::RmsNorm::new(weight, eps);
Ok(Self { inner, span })
}
}
impl Module for RmsNorm {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(x)
}
}
#[derive(Debug)] #[derive(Debug)]
struct RotaryEmbedding { struct RotaryEmbedding {
sin: Tensor, sin: Tensor,

View File

@ -1,4 +1,4 @@
use crate::models::with_tracing::QMatMul; use crate::quantized_nn::{layer_norm, linear, Linear};
pub use crate::quantized_var_builder::VarBuilder; pub use crate::quantized_var_builder::VarBuilder;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D}; use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::Activation; use candle_nn::Activation;
@ -9,12 +9,12 @@ const MAX_SEQ_LEN: usize = 4096;
#[derive(Debug)] #[derive(Debug)]
struct Embedding { struct Embedding {
wte: super::quantized_t5::Embedding, wte: crate::quantized_nn::Embedding,
} }
impl Embedding { impl Embedding {
fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
let wte = super::quantized_t5::Embedding::new(cfg.vocab_size, cfg.n_embd, vb.pp("wte"))?; let wte = crate::quantized_nn::Embedding::new(cfg.vocab_size, cfg.n_embd, vb.pp("wte"))?;
Ok(Self { wte }) Ok(Self { wte })
} }
} }
@ -25,37 +25,6 @@ impl Module for Embedding {
} }
} }
#[derive(Debug)]
struct Linear {
weight: QMatMul,
bias: Option<Tensor>,
}
impl Module for Linear {
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let x = x.apply(&self.weight)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
fn linear(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> {
let bias = vb.get(out_dim, "bias")?.dequantize(vb.device())?;
let weight = QMatMul::new(in_dim, out_dim, vb)?;
Ok(Linear {
weight,
bias: Some(bias),
})
}
fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<candle_nn::LayerNorm> {
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
let bias = vb.get(size, "bias")?.dequantize(vb.device())?;
Ok(candle_nn::LayerNorm::new(weight, bias, eps))
}
fn get_mask(size: usize, device: &Device) -> Result<Tensor> { fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
let mask: Vec<_> = (0..size) let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| u8::from(j > i))) .flat_map(|i| (0..size).map(move |j| u8::from(j > i)))

View File

@ -1,5 +1,4 @@
use crate::models::quantized_t5::Embedding; use crate::quantized_nn::{layer_norm, linear_no_bias, Embedding, Linear};
use crate::models::with_tracing::QMatMul;
pub use crate::quantized_var_builder::VarBuilder; pub use crate::quantized_var_builder::VarBuilder;
use candle::{DType, Device, Module, Result, Tensor, D}; use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::{Activation, LayerNorm}; use candle_nn::{Activation, LayerNorm};
@ -8,28 +7,6 @@ use std::sync::Arc;
pub use crate::models::stable_lm::Config; pub use crate::models::stable_lm::Config;
use crate::models::stable_lm::RotaryEmbedding; use crate::models::stable_lm::RotaryEmbedding;
#[derive(Debug)]
struct Linear {
weight: QMatMul,
}
impl Module for Linear {
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
x.apply(&self.weight)
}
}
fn linear_no_bias(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> {
let weight = QMatMul::new(in_dim, out_dim, vb)?;
Ok(Linear { weight })
}
fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<candle_nn::LayerNorm> {
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
let bias = vb.get(size, "bias")?.dequantize(vb.device())?;
Ok(candle_nn::LayerNorm::new(weight, bias, eps))
}
#[derive(Debug)] #[derive(Debug)]
#[allow(clippy::upper_case_acronyms)] #[allow(clippy::upper_case_acronyms)]
struct MLP { struct MLP {

View File

@ -2,38 +2,13 @@
// https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py // https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
use crate::models::with_tracing::QMatMul; use crate::models::with_tracing::QMatMul;
use crate::quantized_nn::Embedding;
pub use crate::quantized_var_builder::VarBuilder; pub use crate::quantized_var_builder::VarBuilder;
use candle::{DType, Device, Module, Result, Tensor, D}; use candle::{DType, Device, Module, Result, Tensor, D};
use candle_nn::Activation; use candle_nn::Activation;
use serde::Deserialize; use serde::Deserialize;
use std::sync::Arc; use std::sync::Arc;
#[derive(Debug)]
pub struct Embedding {
inner: candle_nn::Embedding,
span: tracing::Span,
}
impl Embedding {
pub fn new(d1: usize, d2: usize, vb: VarBuilder) -> Result<Self> {
let embeddings = vb.get((d1, d2), "weight")?.dequantize(vb.device())?;
let inner = candle_nn::Embedding::new(embeddings, d2);
let span = tracing::span!(tracing::Level::TRACE, "embedding");
Ok(Self { inner, span })
}
pub fn embeddings(&self) -> &Tensor {
self.inner.embeddings()
}
}
impl Module for Embedding {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)
}
}
fn default_relative_attention_max_distance() -> usize { fn default_relative_attention_max_distance() -> usize {
128 128
} }

View File

@ -1,39 +1,9 @@
use super::Config; use super::Config;
use crate::models::{quantized_t5::Embedding, with_tracing::QMatMul}; use crate::quantized_nn::{layer_norm, linear, linear_no_bias, Embedding, Linear};
pub use crate::quantized_var_builder::VarBuilder; pub use crate::quantized_var_builder::VarBuilder;
use candle::{Device, IndexOp, Result, Tensor, D}; use candle::{Device, IndexOp, Result, Tensor, D};
use candle_nn::{Conv1d, Conv1dConfig, LayerNorm, Module}; use candle_nn::{Conv1d, Conv1dConfig, LayerNorm, Module};
#[derive(Debug)]
struct Linear {
weight: QMatMul,
bias: Option<Tensor>,
}
impl Module for Linear {
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let x = x.apply(&self.weight)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
fn linear(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> {
let bias = vb.get(out_dim, "bias")?.dequantize(vb.device())?;
let weight = QMatMul::new(in_dim, out_dim, vb)?;
Ok(Linear {
weight,
bias: Some(bias),
})
}
fn linear_no_bias(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> {
let weight = QMatMul::new(in_dim, out_dim, vb)?;
Ok(Linear { weight, bias: None })
}
fn conv1d( fn conv1d(
in_channels: usize, in_channels: usize,
out_channels: usize, out_channels: usize,
@ -48,12 +18,6 @@ fn conv1d(
Ok(Conv1d::new(weight, Some(bias), config)) Ok(Conv1d::new(weight, Some(bias), config))
} }
fn layer_norm(size: usize, vb: VarBuilder) -> Result<candle_nn::LayerNorm> {
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
let bias = vb.get(size, "bias")?.dequantize(vb.device())?;
Ok(candle_nn::LayerNorm::new(weight, bias, 1e-5))
}
// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62 // https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
struct MultiHeadAttention { struct MultiHeadAttention {
query: Linear, query: Linear,
@ -178,10 +142,10 @@ impl ResidualAttentionBlock {
fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> { fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "residual-attn"); let span = tracing::span!(tracing::Level::TRACE, "residual-attn");
let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?; let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
let attn_ln = layer_norm(n_state, vb.pp("self_attn_layer_norm"))?; let attn_ln = layer_norm(n_state, 1e-5, vb.pp("self_attn_layer_norm"))?;
let cross_attn = if ca { let cross_attn = if ca {
let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?; let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
let cross_attn_ln = layer_norm(n_state, vb.pp("encoder_attn_layer_norm"))?; let cross_attn_ln = layer_norm(n_state, 1e-5, vb.pp("encoder_attn_layer_norm"))?;
Some((cross_attn, cross_attn_ln)) Some((cross_attn, cross_attn_ln))
} else { } else {
None None
@ -189,7 +153,7 @@ impl ResidualAttentionBlock {
let n_mlp = n_state * 4; let n_mlp = n_state * 4;
let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?; let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?; let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
let mlp_ln = layer_norm(n_state, vb.pp("final_layer_norm"))?; let mlp_ln = layer_norm(n_state, 1e-5, vb.pp("final_layer_norm"))?;
Ok(Self { Ok(Self {
attn, attn,
attn_ln, attn_ln,
@ -281,7 +245,7 @@ impl AudioEncoder {
ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(format!("layers.{i}"))) ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(format!("layers.{i}")))
}) })
.collect::<Result<Vec<_>>>()?; .collect::<Result<Vec<_>>>()?;
let ln_post = layer_norm(n_state, vb.pp("layer_norm"))?; let ln_post = layer_norm(n_state, 1e-5, vb.pp("layer_norm"))?;
Ok(Self { Ok(Self {
conv1, conv1,
conv2, conv2,
@ -343,7 +307,7 @@ impl TextDecoder {
ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(format!("layers.{i}"))) ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(format!("layers.{i}")))
}) })
.collect::<Result<Vec<_>>>()?; .collect::<Result<Vec<_>>>()?;
let ln = layer_norm(n_state, vb.pp("layer_norm"))?; let ln = layer_norm(n_state, 1e-5, vb.pp("layer_norm"))?;
let mask: Vec<_> = (0..n_ctx) let mask: Vec<_> = (0..n_ctx)
.flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 })) .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
.collect(); .collect();

View File

@ -0,0 +1,87 @@
use crate::models::with_tracing::QMatMul;
use crate::quantized_var_builder::VarBuilder;
use candle::{Module, Result, Tensor};
#[derive(Debug)]
pub struct Embedding {
inner: candle_nn::Embedding,
span: tracing::Span,
}
impl Embedding {
pub fn new(d1: usize, d2: usize, vb: VarBuilder) -> Result<Self> {
let embeddings = vb.get((d1, d2), "weight")?.dequantize(vb.device())?;
let inner = candle_nn::Embedding::new(embeddings, d2);
let span = tracing::span!(tracing::Level::TRACE, "embedding");
Ok(Self { inner, span })
}
pub fn embeddings(&self) -> &Tensor {
self.inner.embeddings()
}
}
impl Module for Embedding {
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(xs)
}
}
#[derive(Debug)]
pub struct Linear {
weight: QMatMul,
bias: Option<Tensor>,
}
impl Module for Linear {
fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
let x = x.apply(&self.weight)?;
match &self.bias {
None => Ok(x),
Some(bias) => x.broadcast_add(bias),
}
}
}
pub fn linear(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> {
let bias = vb.get(out_dim, "bias")?.dequantize(vb.device())?;
let weight = QMatMul::new(in_dim, out_dim, vb)?;
Ok(Linear {
weight,
bias: Some(bias),
})
}
pub fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<candle_nn::LayerNorm> {
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
let bias = vb.get(size, "bias")?.dequantize(vb.device())?;
Ok(candle_nn::LayerNorm::new(weight, bias, eps))
}
pub fn linear_no_bias(in_dim: usize, out_dim: usize, vb: VarBuilder) -> Result<Linear> {
let weight = QMatMul::new(in_dim, out_dim, vb)?;
Ok(Linear { weight, bias: None })
}
#[derive(Debug)]
pub struct RmsNorm {
inner: candle_nn::RmsNorm,
span: tracing::Span,
}
impl RmsNorm {
pub fn new(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
let weight = vb.get(size, "weight")?.dequantize(vb.device())?;
let inner = candle_nn::RmsNorm::new(weight, eps);
Ok(Self { inner, span })
}
}
impl Module for RmsNorm {
fn forward(&self, x: &Tensor) -> Result<Tensor> {
let _enter = self.span.enter();
self.inner.forward(x)
}
}