mirror of
https://github.com/huggingface/candle.git
synced 2025-06-16 18:48:51 +00:00
T5 quantized example (#922)
* Load gguf files for the quantized t5. * Add the quantized t5 example. * Allow for loading local files. * Add some support for quantizing safetensor files. * Transpose before quantizing. * Quantized t5. * Retrieve the weights from the hub.
This commit is contained in:
186
candle-examples/examples/quantized-t5/main.rs
Normal file
186
candle-examples/examples/quantized-t5/main.rs
Normal file
@ -0,0 +1,186 @@
|
||||
#[cfg(feature = "mkl")]
|
||||
extern crate intel_mkl_src;
|
||||
|
||||
#[cfg(feature = "accelerate")]
|
||||
extern crate accelerate_src;
|
||||
use std::io::Write;
|
||||
use std::path::PathBuf;
|
||||
|
||||
use candle_transformers::models::quantized_t5 as t5;
|
||||
|
||||
use anyhow::{Error as E, Result};
|
||||
use candle::{Device, Tensor};
|
||||
use candle_transformers::generation::LogitsProcessor;
|
||||
use clap::Parser;
|
||||
use hf_hub::{api::sync::Api, Repo, RepoType};
|
||||
use tokenizers::Tokenizer;
|
||||
|
||||
#[derive(Parser, Debug, Clone)]
|
||||
#[command(author, version, about, long_about = None)]
|
||||
struct Args {
|
||||
/// Enable tracing (generates a trace-timestamp.json file).
|
||||
#[arg(long)]
|
||||
tracing: bool,
|
||||
|
||||
/// The model repository to use on the HuggingFace hub.
|
||||
#[arg(long)]
|
||||
model_id: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
revision: Option<String>,
|
||||
|
||||
#[arg(long)]
|
||||
weight_file: Option<String>,
|
||||
|
||||
// Enable/disable decoding.
|
||||
#[arg(long, default_value = "false")]
|
||||
disable_cache: bool,
|
||||
|
||||
/// Use this prompt, otherwise compute sentence similarities.
|
||||
#[arg(long)]
|
||||
prompt: String,
|
||||
|
||||
/// The temperature used to generate samples.
|
||||
#[arg(long, default_value_t = 0.8)]
|
||||
temperature: f64,
|
||||
|
||||
/// Nucleus sampling probability cutoff.
|
||||
#[arg(long)]
|
||||
top_p: Option<f64>,
|
||||
|
||||
/// Penalty to be applied for repeating tokens, 1. means no penalty.
|
||||
#[arg(long, default_value_t = 1.1)]
|
||||
repeat_penalty: f32,
|
||||
|
||||
/// The context size to consider for the repeat penalty.
|
||||
#[arg(long, default_value_t = 64)]
|
||||
repeat_last_n: usize,
|
||||
}
|
||||
|
||||
struct T5ModelBuilder {
|
||||
device: Device,
|
||||
config: t5::Config,
|
||||
weights_filename: PathBuf,
|
||||
}
|
||||
|
||||
impl T5ModelBuilder {
|
||||
pub fn load(args: &Args) -> Result<(Self, Tokenizer)> {
|
||||
let device = Device::Cpu;
|
||||
let default_model = "lmz/candle-quantized-t5".to_string();
|
||||
let (model_id, revision) = match (args.model_id.to_owned(), args.revision.to_owned()) {
|
||||
(Some(model_id), Some(revision)) => (model_id, revision),
|
||||
(Some(model_id), None) => (model_id, "main".to_string()),
|
||||
(None, Some(revision)) => (default_model, revision),
|
||||
(None, None) => (default_model, "main".to_string()),
|
||||
};
|
||||
|
||||
let repo = Repo::with_revision(model_id, RepoType::Model, revision);
|
||||
let api = Api::new()?;
|
||||
let api = api.repo(repo);
|
||||
let config_filename = api.get("config.json")?;
|
||||
let tokenizer_filename = api.get("tokenizer.json")?;
|
||||
let weights_filename = match &args.weight_file {
|
||||
Some(filename) => std::path::PathBuf::from(filename),
|
||||
None => api.get("model.gguf")?,
|
||||
};
|
||||
let config = std::fs::read_to_string(config_filename)?;
|
||||
let mut config: t5::Config = serde_json::from_str(&config)?;
|
||||
config.use_cache = !args.disable_cache;
|
||||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
|
||||
Ok((
|
||||
Self {
|
||||
device,
|
||||
config,
|
||||
weights_filename,
|
||||
},
|
||||
tokenizer,
|
||||
))
|
||||
}
|
||||
|
||||
pub fn build_model(&self) -> Result<t5::T5ForConditionalGeneration> {
|
||||
let vb = t5::VarBuilder::from_gguf(&self.weights_filename)?;
|
||||
Ok(t5::T5ForConditionalGeneration::load(vb, &self.config)?)
|
||||
}
|
||||
}
|
||||
|
||||
fn main() -> Result<()> {
|
||||
use tracing_chrome::ChromeLayerBuilder;
|
||||
use tracing_subscriber::prelude::*;
|
||||
|
||||
let args = Args::parse();
|
||||
|
||||
let _guard = if args.tracing {
|
||||
println!("tracing...");
|
||||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
|
||||
tracing_subscriber::registry().with(chrome_layer).init();
|
||||
Some(guard)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let (builder, mut tokenizer) = T5ModelBuilder::load(&args)?;
|
||||
let device = &builder.device;
|
||||
let tokenizer = tokenizer
|
||||
.with_padding(None)
|
||||
.with_truncation(None)
|
||||
.map_err(E::msg)?;
|
||||
let tokens = tokenizer
|
||||
.encode(args.prompt, true)
|
||||
.map_err(E::msg)?
|
||||
.get_ids()
|
||||
.to_vec();
|
||||
let input_token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?;
|
||||
let mut model = builder.build_model()?;
|
||||
let mut output_token_ids = [builder.config.pad_token_id as u32].to_vec();
|
||||
let temperature = if args.temperature <= 0. {
|
||||
None
|
||||
} else {
|
||||
Some(args.temperature)
|
||||
};
|
||||
let mut logits_processor = LogitsProcessor::new(299792458, temperature, args.top_p);
|
||||
let encoder_output = model.encode(&input_token_ids)?;
|
||||
let start = std::time::Instant::now();
|
||||
|
||||
for index in 0.. {
|
||||
if output_token_ids.len() > 512 {
|
||||
break;
|
||||
}
|
||||
let decoder_token_ids = if index == 0 || !builder.config.use_cache {
|
||||
Tensor::new(output_token_ids.as_slice(), device)?.unsqueeze(0)?
|
||||
} else {
|
||||
let last_token = *output_token_ids.last().unwrap();
|
||||
Tensor::new(&[last_token], device)?.unsqueeze(0)?
|
||||
};
|
||||
let logits = model
|
||||
.decode(&decoder_token_ids, &encoder_output)?
|
||||
.squeeze(0)?;
|
||||
let logits = if args.repeat_penalty == 1. {
|
||||
logits
|
||||
} else {
|
||||
let start_at = output_token_ids.len().saturating_sub(args.repeat_last_n);
|
||||
candle_transformers::utils::apply_repeat_penalty(
|
||||
&logits,
|
||||
args.repeat_penalty,
|
||||
&output_token_ids[start_at..],
|
||||
)?
|
||||
};
|
||||
|
||||
let next_token_id = logits_processor.sample(&logits)?;
|
||||
if next_token_id as usize == builder.config.eos_token_id {
|
||||
break;
|
||||
}
|
||||
output_token_ids.push(next_token_id);
|
||||
if let Some(text) = tokenizer.id_to_token(next_token_id) {
|
||||
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
|
||||
print!("{text}");
|
||||
std::io::stdout().flush()?;
|
||||
}
|
||||
}
|
||||
let dt = start.elapsed();
|
||||
println!(
|
||||
"\n{} tokens generated ({:.2} token/s)\n",
|
||||
output_token_ids.len(),
|
||||
output_token_ids.len() as f64 / dt.as_secs_f64(),
|
||||
);
|
||||
Ok(())
|
||||
}
|
Reference in New Issue
Block a user