mirror of
https://github.com/huggingface/candle.git
synced 2025-06-18 11:37:11 +00:00
Add conv-transpose. (#635)
* Add conv-transpose. * Return zeros for now. * Naive CPU implementation. * Add a conv-transpose test + fix the cpu implementation. * Add a second test.
This commit is contained in:
@ -54,6 +54,42 @@ impl ParamsConv2D {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct ParamsConvTranspose2D {
|
||||
pub(crate) b_size: usize,
|
||||
pub(crate) i_h: usize,
|
||||
pub(crate) i_w: usize,
|
||||
pub(crate) k_h: usize,
|
||||
pub(crate) k_w: usize,
|
||||
pub(crate) c_out: usize,
|
||||
pub(crate) c_in: usize,
|
||||
pub(crate) padding: usize,
|
||||
pub(crate) output_padding: usize,
|
||||
pub(crate) stride: usize,
|
||||
}
|
||||
|
||||
impl ParamsConvTranspose2D {
|
||||
pub(crate) fn out_h(&self) -> usize {
|
||||
let dilation = 1;
|
||||
(self.i_h - 1) * self.stride - 2 * self.padding
|
||||
+ dilation * (self.k_h - 1)
|
||||
+ self.output_padding
|
||||
+ 1
|
||||
}
|
||||
|
||||
pub(crate) fn out_w(&self) -> usize {
|
||||
let dilation = 1;
|
||||
(self.i_w - 1) * self.stride - 2 * self.padding
|
||||
+ dilation * (self.k_w - 1)
|
||||
+ self.output_padding
|
||||
+ 1
|
||||
}
|
||||
|
||||
pub(crate) fn out_dims(&self) -> Vec<usize> {
|
||||
vec![self.b_size, self.c_out, self.out_h(), self.out_w()]
|
||||
}
|
||||
}
|
||||
|
||||
impl Tensor {
|
||||
fn conv1d_single_group(&self, kernel: &Self, params: &ParamsConv1D) -> Result<Self> {
|
||||
let storage =
|
||||
@ -166,4 +202,46 @@ impl Tensor {
|
||||
Tensor::cat(&blocks, 1)
|
||||
}
|
||||
}
|
||||
|
||||
/// Applies a 2D transposed convolution over the input tensor.
|
||||
pub fn conv_transpose2d(
|
||||
&self,
|
||||
kernel: &Self,
|
||||
padding: usize,
|
||||
output_padding: usize,
|
||||
stride: usize,
|
||||
) -> Result<Self> {
|
||||
let (b_size, c_in, i_h, i_w) = self.dims4()?;
|
||||
let (c_in_k, c_out, k_h, k_w) = kernel.dims4()?;
|
||||
if c_in != c_in_k {
|
||||
crate::bail!("in_channel mismatch between input ({c_in}) and kernel ({c_in_k})")
|
||||
}
|
||||
let params = ParamsConvTranspose2D {
|
||||
b_size,
|
||||
i_h,
|
||||
i_w,
|
||||
k_h,
|
||||
k_w,
|
||||
c_out,
|
||||
c_in,
|
||||
padding,
|
||||
output_padding,
|
||||
stride,
|
||||
};
|
||||
let storage = self.storage().conv_transpose2d(
|
||||
self.layout(),
|
||||
&kernel.storage(),
|
||||
kernel.layout(),
|
||||
¶ms,
|
||||
)?;
|
||||
let op = BackpropOp::new2(self, kernel, |arg, kernel| Op::ConvTranspose2D {
|
||||
arg,
|
||||
kernel,
|
||||
padding: params.padding,
|
||||
output_padding: params.output_padding,
|
||||
stride: params.stride,
|
||||
});
|
||||
let out_dims = params.out_dims();
|
||||
Ok(crate::tensor::from_storage(storage, out_dims, op, false))
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user