Implement T5 decoding (#864)

* Load t5 decoder

* Run enc, dec, and lm head, but no cross attn

* Cross-attention over key_value_states

* New arg for decoder input ids

* Add mask, don't forward position biases through decoder

* Update t5 examples

* Clippy + rustfmt
This commit is contained in:
Juarez Bochi
2023-09-15 13:05:12 -07:00
committed by GitHub
parent c2007ac88f
commit 3e49f8fce5
3 changed files with 260 additions and 61 deletions

View File

@ -1,17 +1,25 @@
# candle-t5
Generates embeddings using a T5 model. It doesn't support generation yet.
## Encoder-decoder example:
```bash
$ cargo run --example t5 -- --model-id t5-large --prompt 'how tall is obama' --n 1
Loaded and encoded 2.014244792s
[[[-0.3174, -0.1462, 0.0065, ..., -0.0579, -0.0581, 0.1387],
[-0.2905, -0.1945, -0.0685, ..., -0.2457, -0.5137, -0.1760],
[-0.0591, -0.0213, -0.0241, ..., -0.0210, 0.0491, -0.0300],
...
[-0.4333, 0.0027, -0.0609, ..., 0.3069, -0.2252, 0.3306],
[-0.1458, 0.1323, -0.0138, ..., 0.3000, -0.4550, -0.0384],
[ 0.0397, 0.0485, -0.2373, ..., 0.2578, -0.2650, -0.4356]]]
Tensor[[1, 9, 1024], f32]
Took 2.1363425s
```
$ cargo run --example t5 -- --model-id "t5-small" --prompt "translate to German: A beautiful candle." --decode
...
Running on CPU, to run on GPU, build this example with `--features cuda`
Eine schöne Kerze.
9 tokens generated (2.42 token/s)
```
## Sentence embedding example:
```bash
$ cargo run --example t5 -- --model-id "t5-small" --prompt "A beautiful candle."
...
[[[ 0.0515, -0.0541, -0.0761, ..., -0.0392, 0.1511, -0.0265],
[-0.0974, 0.0998, -0.1659, ..., -0.2450, 0.1738, -0.0164],
[ 0.0624, -0.1024, 0.0430, ..., -0.1388, 0.0564, -0.2962],
[-0.0389, -0.1173, 0.0026, ..., 0.1064, -0.1065, 0.0990],
[ 0.1300, 0.0027, -0.0326, ..., 0.0026, -0.0317, 0.0851]]]
Tensor[[1, 5, 512], f32]
Took 303.766583ms
```

View File

@ -3,18 +3,22 @@ extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
use std::io::Write;
use std::path::PathBuf;
use candle_transformers::models::t5;
use anyhow::{anyhow, Error as E, Result};
use candle::{DType, Tensor};
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
use candle_transformers::generation::LogitsProcessor;
use clap::Parser;
use hf_hub::{api::sync::Api, Cache, Repo, RepoType};
use tokenizers::Tokenizer;
const DTYPE: DType = DType::F32;
#[derive(Parser, Debug)]
#[derive(Parser, Debug, Clone)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
@ -36,7 +40,11 @@ struct Args {
#[arg(long)]
revision: Option<String>,
/// Compute embeddings for this prompt, otherwise compute sentence similarities.
/// Enable decoding.
#[arg(long)]
decode: bool,
/// Use this prompt, otherwise compute sentence similarities.
#[arg(long)]
prompt: Option<String>,
@ -49,12 +57,18 @@ struct Args {
normalize_embeddings: bool,
}
impl Args {
fn build_model_and_tokenizer(&self) -> Result<(t5::T5EncoderModel, Tokenizer)> {
let device = candle_examples::device(self.cpu)?;
struct T5ModelBuilder {
device: Device,
config: t5::Config,
weights_filename: PathBuf,
}
impl T5ModelBuilder {
pub fn load(args: &Args) -> Result<(Self, Tokenizer)> {
let device = candle_examples::device(args.cpu)?;
let default_model = "t5-small".to_string();
let default_revision = "refs/pr/15".to_string();
let (model_id, revision) = match (self.model_id.to_owned(), self.revision.to_owned()) {
let (model_id, revision) = match (args.model_id.to_owned(), args.revision.to_owned()) {
(Some(model_id), Some(revision)) => (model_id, revision),
(Some(model_id), None) => (model_id, "main".to_string()),
(None, Some(revision)) => (default_model, revision),
@ -62,7 +76,7 @@ impl Args {
};
let repo = Repo::with_revision(model_id, RepoType::Model, revision);
let (config_filename, tokenizer_filename, weights_filename) = if self.offline {
let (config_filename, tokenizer_filename, weights_filename) = if args.offline {
let cache = Cache::default().repo(repo);
(
cache
@ -87,18 +101,36 @@ impl Args {
let config = std::fs::read_to_string(config_filename)?;
let config: t5::Config = serde_json::from_str(&config)?;
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
Ok((
Self {
device,
config,
weights_filename,
},
tokenizer,
))
}
let weights = unsafe { candle::safetensors::MmapedFile::new(weights_filename)? };
pub fn build_encoder(&self) -> Result<t5::T5EncoderModel> {
let weights =
unsafe { candle::safetensors::MmapedFile::new(self.weights_filename.clone())? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &device);
let model = t5::T5EncoderModel::load(vb, &config)?;
Ok((model, tokenizer))
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &self.device);
Ok(t5::T5EncoderModel::load(vb, &self.config)?)
}
pub fn build_conditional_generation(&self) -> Result<t5::T5ForConditionalGeneration> {
let weights =
unsafe { candle::safetensors::MmapedFile::new(self.weights_filename.clone())? };
let weights = weights.deserialize()?;
let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &self.device);
Ok(t5::T5ForConditionalGeneration::load(vb, &self.config)?)
}
}
fn main() -> Result<()> {
let args = Args::parse();
let (model, mut tokenizer) = args.build_model_and_tokenizer()?;
let (builder, mut tokenizer) = T5ModelBuilder::load(&args)?;
let tokenizer = tokenizer
.with_padding(None)
.with_truncation(None)
@ -110,17 +142,51 @@ fn main() -> Result<()> {
.map_err(E::msg)?
.get_ids()
.to_vec();
let token_ids = Tensor::new(&tokens[..], model.device())?.unsqueeze(0)?;
for idx in 0..args.n {
let start = std::time::Instant::now();
let ys = model.forward(&token_ids)?;
if idx == 0 {
println!("{ys}");
let input_token_ids = Tensor::new(&tokens[..], &builder.device)?.unsqueeze(0)?;
if !args.decode {
let model = builder.build_encoder()?;
for idx in 0..args.n {
let start = std::time::Instant::now();
let ys = model.forward(&input_token_ids)?;
if idx == 0 {
println!("{ys}");
}
println!("Took {:?}", start.elapsed());
}
println!("Took {:?}", start.elapsed());
} else {
let model = builder.build_conditional_generation()?;
let mut output_token_ids = [builder.config.pad_token_id as u32].to_vec();
let mut logits_processor = LogitsProcessor::new(299792458, None, None);
let start = std::time::Instant::now();
for _index in 0.. {
if output_token_ids.len() > 512 {
break;
}
let decoder_token_ids =
Tensor::new(&output_token_ids[..], &builder.device)?.unsqueeze(0)?;
let logits = model.forward(&input_token_ids, &decoder_token_ids)?;
let next_token_id = logits_processor.sample(&logits.flatten_to(1)?)?;
if (next_token_id as usize) == builder.config.eos_token_id {
break;
}
output_token_ids.push(next_token_id);
if let Some(text) = tokenizer.id_to_token(next_token_id) {
let text = text.replace('▁', " ").replace("<0x0A>", "\n");
print!("{text}");
std::io::stdout().flush()?;
}
}
let dt = start.elapsed();
println!(
"\n{} tokens generated ({:.2} token/s)\n",
tokens.len(),
tokens.len() as f64 / dt.as_secs_f64(),
);
}
}
None => {
let model = builder.build_encoder()?;
let sentences = [
"The cat sits outside",
"A man is playing guitar",