Add frame generation.

This commit is contained in:
laurent
2025-04-03 13:41:16 +02:00
parent d72c44705c
commit 3fb67e0c2c
2 changed files with 61 additions and 5 deletions

View File

@ -34,7 +34,7 @@ struct Args {
#[arg(long)] #[arg(long)]
use_flash_attn: bool, use_flash_attn: bool,
#[arg(long)] #[arg(long, default_value = "[0]Hey how are you doing?")]
prompt: String, prompt: String,
/// The temperature used to generate samples. /// The temperature used to generate samples.
@ -76,6 +76,10 @@ struct Args {
#[arg(long)] #[arg(long)]
weights: Option<String>, weights: Option<String>,
/// The mimi model weight file, in safetensor format.
#[arg(long)]
mimi_weights: Option<String>,
/// Penalty to be applied for repeating tokens, 1. means no penalty. /// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)] #[arg(long, default_value_t = 1.1)]
repeat_penalty: f32, repeat_penalty: f32,
@ -139,9 +143,14 @@ fn main() -> Result<()> {
.model("meta-llama/Llama-3.2-1B".to_string()) .model("meta-llama/Llama-3.2-1B".to_string())
.get("tokenizer.json")?, .get("tokenizer.json")?,
}; };
let mimi_filename = match args.mimi_weights {
Some(model) => std::path::PathBuf::from(model),
None => Api::new()?
.model("kyutai/mimi".to_string())
.get("model.safetensors")?,
};
println!("retrieved the files in {:?}", start.elapsed()); println!("retrieved the files in {:?}", start.elapsed());
let _tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now(); let start = std::time::Instant::now();
let config: Config = match args.config { let config: Config = match args.config {
@ -152,14 +161,23 @@ fn main() -> Result<()> {
} }
}; };
let device = candle_examples::device(args.cpu)?; let device = candle_examples::device(args.cpu)?;
let (_model, _device) = { let (_model, device) = {
let dtype = DType::F32; let dtype = device.bf16_default_to_f32();
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?; let model = Model::new(&config, vb)?;
(model, device) (model, device)
}; };
let _mimi_model = {
use candle_transformers::models::mimi;
let vb =
unsafe { VarBuilder::from_mmaped_safetensors(&[mimi_filename], DType::F32, &device)? };
let config = mimi::Config::v0_1(None);
mimi::Model::new(config, vb)?
};
println!("loaded the model in {:?}", start.elapsed()); println!("loaded the model in {:?}", start.elapsed());
let prompt = tokenizer.encode(args.prompt, true).map_err(E::msg)?;
println!("{prompt:?}");
Ok(()) Ok(())
} }

View File

@ -7,6 +7,7 @@
/// audio codes from text and audio inputs. The model architecture employs a Llama backbone and a /// audio codes from text and audio inputs. The model architecture employs a Llama backbone and a
/// smaller audio decoder that produces Mimi audio codes. /// smaller audio decoder that produces Mimi audio codes.
/// ///
use crate::generation::LogitsProcessor;
use crate::models::encodec; use crate::models::encodec;
use candle::{DType, Device, IndexOp, Module, Result, Tensor, D}; use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
use candle_nn::{embedding, linear_b, Embedding, Linear, RmsNorm, VarBuilder}; use candle_nn::{embedding, linear_b, Embedding, Linear, RmsNorm, VarBuilder};
@ -363,6 +364,7 @@ pub struct Model {
text_embeddings: Embedding, text_embeddings: Embedding,
projection: Linear, projection: Linear,
audio_head: Tensor, audio_head: Tensor,
config: Config,
} }
impl Model { impl Model {
@ -403,6 +405,42 @@ impl Model {
text_embeddings, text_embeddings,
projection, projection,
audio_head, audio_head,
config: cfg.clone(),
}) })
} }
pub fn clear_kv_cache(&mut self) {
self.backbone.clear_kv_cache();
self.decoder.clear_kv_cache();
}
pub fn generate_frame(
&mut self,
tokens: &Tensor,
tokens_mask: &Tensor,
input_pos: usize,
lp: &mut LogitsProcessor,
) -> Result<Vec<u32>> {
let h = tokens.clone(); // TODO
let h = self.backbone.forward(&h, input_pos)?;
let c0_logits = h.apply(&self.codebook0_head)?;
let c0_sample = lp.sample(&c0_logits)?;
let mut all_samples = vec![c0_sample];
let c0_sample = Tensor::from_slice(&[c0_sample], (1, 1), &self.decoder.device)?;
let c0_embed = self.audio_embeddings.forward(&c0_sample)?;
let mut curr_h = Tensor::cat(&[h, c0_embed], 1)?;
self.decoder.clear_kv_cache();
for i in 0..(self.config.audio_num_codebooks - 1) {
let proj_h = curr_h.apply(&self.projection)?;
let decoder_h = self.decoder.forward(&proj_h, i)?;
let ci_logits = decoder_h.matmul(&self.audio_head.get(i)?)?;
let ci_sample = lp.sample(&ci_logits)?;
all_samples.push(ci_sample);
let ci_sample = Tensor::from_slice(&[ci_sample], (1, 1), &self.decoder.device)?;
let ci_embed = self.audio_embeddings.forward(&ci_sample)?;
curr_h = ci_embed
}
Ok(all_samples)
}
} }