Use flash-attn for mistral. (#1004)

This commit is contained in:
Laurent Mazare
2023-09-30 13:15:10 +02:00
committed by GitHub
parent 87e3a4e175
commit 4021272875
2 changed files with 41 additions and 9 deletions

View File

@ -113,6 +113,9 @@ struct Args {
#[arg(long)]
tracing: bool,
#[arg(long)]
use_flash_attn: bool,
#[arg(long)]
prompt: String,
@ -207,7 +210,7 @@ fn main() -> Result<()> {
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
let start = std::time::Instant::now();
let config = Config::config_7b_v0_1();
let config = Config::config_7b_v0_1(args.use_flash_attn);
let device = candle_examples::device(args.cpu)?;
let dtype = if device.is_cuda() {
DType::BF16

View File

@ -17,10 +17,11 @@ pub struct Config {
rms_norm_eps: f64,
rope_theta: f64,
sliding_window: usize,
use_flash_attn: bool,
}
impl Config {
pub fn config_7b_v0_1() -> Self {
pub fn config_7b_v0_1(use_flash_attn: bool) -> Self {
Self {
vocab_size: 32000,
hidden_size: 4096,
@ -33,6 +34,7 @@ impl Config {
rms_norm_eps: 1e-5,
rope_theta: 10_000.,
sliding_window: 4096,
use_flash_attn,
}
}
}
@ -142,6 +144,22 @@ impl Module for MLP {
}
}
#[cfg(feature = "flash-attn")]
fn flash_attn(
q: &Tensor,
k: &Tensor,
v: &Tensor,
softmax_scale: f32,
causal: bool,
) -> Result<Tensor> {
candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
}
#[cfg(not(feature = "flash-attn"))]
fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
unimplemented!("compile with '--features flash-attn'")
}
#[derive(Debug)]
struct Attention {
q_proj: Linear,
@ -155,6 +173,7 @@ struct Attention {
hidden_size: usize,
rotary_emb: Arc<RotaryEmbedding>,
kv_cache: Option<(Tensor, Tensor)>,
use_flash_attn: bool,
}
impl Attention {
@ -180,6 +199,7 @@ impl Attention {
hidden_size: hidden_sz,
rotary_emb,
kv_cache: None,
use_flash_attn: cfg.use_flash_attn,
})
}
@ -234,6 +254,14 @@ impl Attention {
let key_states = self.repeat_kv(key_states)?;
let value_states = self.repeat_kv(value_states)?;
let attn_output = if self.use_flash_attn {
// flash-attn expects (b_sz, seq_len, nheads, head_dim)
let q = query_states.transpose(1, 2)?;
let k = key_states.transpose(1, 2)?;
let v = value_states.transpose(1, 2)?;
let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
flash_attn(&q, &k, &v, softmax_scale, q_len > 1)?.transpose(1, 2)?
} else {
let scale = 1f64 / f64::sqrt(self.head_dim as f64);
let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
@ -242,7 +270,8 @@ impl Attention {
Some(mask) => attn_weights.broadcast_add(mask)?,
};
let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
let attn_output = attn_weights.matmul(&value_states)?;
attn_weights.matmul(&value_states)?
};
attn_output
.transpose(1, 2)?
.reshape((b_sz, q_len, self.hidden_size))?