Merge branch 'main' into update_multiprocess

This commit is contained in:
Nicolas Patry
2023-07-29 16:38:35 +02:00
committed by GitHub
9 changed files with 161 additions and 31 deletions

View File

@ -24,7 +24,7 @@ fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
fn make_causal_mask(t: usize, device: &Device) -> Result<Tensor> {
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u32::from(j <= i)))
.flat_map(|i| (0..t).map(move |j| u8::from(j <= i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), device)?;
Ok(mask)

View File

@ -424,7 +424,7 @@ pub struct Falcon {
fn make_causal_mask(t: usize) -> Result<Tensor> {
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
Ok(mask)

View File

@ -91,9 +91,8 @@ impl Cache {
if let Some(mask) = masks.get(&t) {
Ok(mask.clone())
} else {
// TODO: If we support bool or u8 tensors, this would be better.
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
masks.insert(t, mask.clone());

View File

@ -47,9 +47,8 @@ impl Cache {
if let Some(mask) = masks.get(&t) {
Ok(mask.clone())
} else {
// TODO: If we support bool or u8 tensors, this would be better.
let mask: Vec<_> = (0..t)
.flat_map(|i| (0..t).map(move |j| u32::from(j > i)))
.flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
.collect();
let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
masks.insert(t, mask.clone());

View File

@ -1,16 +1,130 @@
// This should rearch 91.5% accuracy.
// This should reach 91.5% accuracy.
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;
use anyhow::Result;
use candle::{DType, Var, D};
use candle_nn::{loss, ops};
use candle::{DType, Device, Result, Shape, Tensor, Var, D};
use candle_nn::{loss, ops, Linear};
use std::sync::{Arc, Mutex};
const IMAGE_DIM: usize = 784;
const LABELS: usize = 10;
pub fn main() -> Result<()> {
struct TensorData {
tensors: std::collections::HashMap<String, Var>,
pub dtype: DType,
pub device: Device,
}
// A variant of candle_nn::VarBuilder for initializing variables before training.
#[derive(Clone)]
struct VarStore {
data: Arc<Mutex<TensorData>>,
path: Vec<String>,
}
impl VarStore {
fn new(dtype: DType, device: Device) -> Self {
let data = TensorData {
tensors: std::collections::HashMap::new(),
dtype,
device,
};
Self {
data: Arc::new(Mutex::new(data)),
path: vec![],
}
}
fn pp(&self, s: &str) -> Self {
let mut path = self.path.clone();
path.push(s.to_string());
Self {
data: self.data.clone(),
path,
}
}
fn get<S: Into<Shape>>(&self, shape: S, tensor_name: &str) -> Result<Tensor> {
let shape = shape.into();
let path = if self.path.is_empty() {
tensor_name.to_string()
} else {
[&self.path.join("."), tensor_name].join(".")
};
let mut tensor_data = self.data.lock().unwrap();
if let Some(tensor) = tensor_data.tensors.get(&path) {
let tensor_shape = tensor.shape();
if &shape != tensor_shape {
candle::bail!("shape mismatch on {path}: {shape:?} <> {tensor_shape:?}")
}
return Ok(tensor.as_tensor().clone());
}
// TODO: Proper initialization using the `Init` enum.
let var = Var::zeros(shape, tensor_data.dtype, &tensor_data.device)?;
let tensor = var.as_tensor().clone();
tensor_data.tensors.insert(path, var);
Ok(tensor)
}
fn all_vars(&self) -> Vec<Var> {
let tensor_data = self.data.lock().unwrap();
#[allow(clippy::map_clone)]
tensor_data
.tensors
.values()
.map(|c| c.clone())
.collect::<Vec<_>>()
}
}
fn linear(dim1: usize, dim2: usize, vs: VarStore) -> Result<Linear> {
let ws = vs.get((dim2, dim1), "weight")?;
let bs = vs.get(dim2, "bias")?;
Ok(Linear::new(ws, Some(bs)))
}
#[allow(unused)]
struct LinearModel {
linear: Linear,
}
#[allow(unused)]
impl LinearModel {
fn new(vs: VarStore) -> Result<Self> {
let linear = linear(IMAGE_DIM, LABELS, vs)?;
Ok(Self { linear })
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
self.linear.forward(xs)
}
}
#[allow(unused)]
struct Mlp {
ln1: Linear,
ln2: Linear,
}
#[allow(unused)]
impl Mlp {
fn new(vs: VarStore) -> Result<Self> {
let ln1 = linear(IMAGE_DIM, 100, vs.pp("ln1"))?;
let ln2 = linear(100, LABELS, vs.pp("ln2"))?;
Ok(Self { ln1, ln2 })
}
fn forward(&self, xs: &Tensor) -> Result<Tensor> {
let xs = self.ln1.forward(xs)?;
let xs = xs.relu()?;
self.ln2.forward(&xs)
}
}
pub fn main() -> anyhow::Result<()> {
let dev = candle::Device::cuda_if_available(0)?;
// Load the dataset
let m = candle_nn::vision::mnist::load_dir("data")?;
println!("train-images: {:?}", m.train_images.shape());
println!("train-labels: {:?}", m.train_labels.shape());
@ -19,18 +133,23 @@ pub fn main() -> Result<()> {
let train_labels = m.train_labels;
let train_images = m.train_images;
let train_labels = train_labels.to_dtype(DType::U32)?.unsqueeze(1)?;
let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?;
let bs = Var::zeros(LABELS, DType::F32, &dev)?;
let sgd = candle_nn::SGD::new(&[&ws, &bs], 1.0);
let vs = VarStore::new(DType::F32, dev);
let model = LinearModel::new(vs.clone())?;
// let model = Mlp::new(vs)?;
let all_vars = vs.all_vars();
let all_vars = all_vars.iter().collect::<Vec<_>>();
let sgd = candle_nn::SGD::new(&all_vars, 1.0);
let test_images = m.test_images;
let test_labels = m.test_labels.to_dtype(DType::U32)?;
for epoch in 1..200 {
let logits = train_images.matmul(&ws)?.broadcast_add(&bs)?;
let logits = model.forward(&train_images)?;
let log_sm = ops::log_softmax(&logits, D::Minus1)?;
let loss = loss::nll(&log_sm, &train_labels)?;
sgd.backward_step(&loss)?;
let test_logits = test_images.matmul(&ws)?.broadcast_add(&bs)?;
let test_logits = model.forward(&test_images)?;
let sum_ok = test_logits
.argmax(D::Minus1)?
.eq(&test_labels)?